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Linked and knotted beams of light
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Maxwell’s equations allow for curious solutions characterized by
the property that all electric and magnetic field lines are closed
loops with any two electric (or magnetic) field lines linked. These
little-known solutions, constructed by Rañada1, are based on
the Hopf fibration. Here we analyse their physical properties to
investigate how they can be experimentally realized. We study
their time evolution and uncover, through a decomposition
into a spectrum of spherical harmonics, a remarkably simple
representation. Using this representation, first, a connection
is established to the Chandrasekhar–Kendall curl eigenstates2,
which are of broad importance in plasma physics and fluid
dynamics. Second, we show how a new class of knotted beams
of light can be derived, and third, we show that approximate
knots of light may be generated using tightly focused circularly
polarized laser beams. We predict theoretical extensions and
potential applications, in fields ranging from fluid dynamics,
topological optical solitons and particle trapping to cold atomic
gases and plasma confinement.

The concept of field lines whose tangents are the electric
or magnetic field is typically used to visualize static solutions
of Maxwell’s equations. Propagating solutions often have simple
field-line structures and so are not usually described in terms of
field lines. In the present work, we study a propagating field whose
defining and most striking property is the topological structure of
its electric and magnetic field lines.

An intriguing configuration for field lines is to be linked and/or
knotted. Two closed field lines c1(τ), c2(τ) are linked if they have
non-vanishing Gauss linking integral3–6,

L(c1,c2) = 1

4π

∫
dc1

dτ1

· c1 −c2

|c1 −c2|3
× dc2

dτ2

dτ1dτ2,

whereas for a single field line c(τ) the self-linking number, L(c,c),
is a measure of knottedness. The linking integral L can also be
computed visually by projecting the field lines onto a plane and
subsequently counting the crossings in an oriented way3. For
example, the lines in Fig. 1a have linking number 1, but do not
form a knot, whereas the blue and orange field lines in Fig. 4 below
are knotted and linked to each other. In the case of magnetic or
electric fields, averaging the linking integral over all field-line pairs
together with the self-linking number over all field lines gives rise
to the magnetic and electric helicities4,5:

hm =
∫

d3x A(x) ·B(x) he =
∫

d3x C(x) ·E(x), (1)

where B := ∇×A and E := ∇×C in free space.

h

h
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Figure 1 Construction of the Hopf fibration. a–c, Left column: A torus can be
constructed out of circles (fibres) in such a way that no two circles cross and each
circle is linked to every other one. a,b, Each circle in such a configuration wraps
once around each circumference of the torus. c, By nesting such tori into one
another, the whole of three dimensional space, including the point at r= ∞
(R3 ∪∞ ∼ S3) can be filled with linked circles. There are two ‘special’ fibres: the
circle of unit radius that corresponds to the infinitely thin torus, and the straight line,
or circle of infinite radius, that corresponds to an infinitely large torus. These two
fibres will provide an economical way of characterizing the time evolution of the
configuration. Right column: The Hopf map maps such circles inR3 ∪∞ ∼ S3 to
points on the sphere S2 ∼ C∪∞. Each circle is mapped to a point, each torus in
R3 ∪∞ onto a (parallel) circle on S2. The circular (straight) special fibres are
mapped to the north (south) pole and will be referred to as the n (s) fibres. In the
present work, the fibres of two everywhere-orthogonal Hopf fibrations correspond to
electric and magnetic field lines (see Fig. 2 for t= 0).
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Since Kelvin proposed knotted field configurations as a model
for atoms, knots and links have been studied in branches of
physics as diverse as fluid dynamics7, plasma5 and polymer
physics6. More recently, an approach to knotted classical fields
was proposed8 and further understood and developed9,10. Knotted
vortex lines have also been considered in phases associated with
the electron states of hydrogen11, with the Riemann–Silberstein
vector of the electromagnetic field12 and in phases associated with
lines of darkness in a monochromatic light field13, with the latter
predictions experimentally verified14.

Here we consider a state of light whose electric field lines are
all closed and any two are linked to each other as described in
Figs 1 and 2. The magnetic and Poynting field lines are similarly
arranged. This structure is based on the Hopf fibration defined
by the Hopf map h : S3 → S2 (see Fig. 1)15,16. Using stereographic
projections, h can in turn be expressed as a complex function in
R3 (for example ζ(x,y,z,0) or η(x,y,z,0) below) whose lines of
constant amplitude and phase are circles, and surfaces of constant
amplitude are nested tori.

Electromagnetic fields derived from the Hopf fibration first
appeared in ref. 17, and were extended to propagating solutions
by Rañada in refs 1,18,19. The construction was cast in terms
of differential forms, which provide a natural way to map fields
between spaces of differing dimensions. The resulting electric and
magnetic fields have simple expressions:

B = 1

4πi

∇η×∇η̄

(1+ η̄η)2
; E = 1

4πi

∇ζ×∇ζ̄

(1+ ζ̄ζ)2
, (2)

ζ(x,y,z, t) = (Ax + ty)+ i(Az + t(A−1))

(tx −Ay)+ i(A(A−1)− tz)
,

η(x,y,z, t) = (Az + t(A−1))+ i(tx −Ay)

(Ax + ty)+ i(A(A−1)− tz)
,

where A = 1
2
(x2 + y2 + z2 − t2 +1), and x,y,z, t are dimensionless

multiples of a length scale a. Since both ∇η and ∇η̄ are
perpendicular to lines of constant η, the magnetic field is tangential
to lines of constant η. A similar argument holds for the electric field
and ζ. The corresponding field lines are shown in Fig. 2.

As a first step in our investigation, we present a numerical
study of the evolution of the field lines and energy density, shown
in Fig. 2. The initially spherical energy density expands like an
‘opening umbrella’ with a preferred propagation direction (z) while
preserving the Hopf structure. The propagation direction is set by
the cross-product of the electric and magnetic n lines (as defined in
Fig. 1). The s fibre twists around the centre of energy density. The n
fibre cuts through the maximum of energy density and its tangent
on the z axis undergoes a rotation with an angle analogous to the
Gouy phase shift of Gaussian beam optics20.

To further characterize the physical properties of the field
configuration, we compute the full set of conserved quantities
that correspond to the known (conformal) symmetries of
electromagnetism in free space (see Table 1). Note that all currents,
when scaled by the energy density and the scale factor a, are integer
multiples of one another; that the fields carry angular momentum
along the propagation axis and that the momentum is a fraction
of the energy, so the Hopf fields can be transformed via a Lorentz
transformation to a rest frame, or to a counter-propagating frame,
making them even more beamlike.

Though the linking number is also a conserved quantity for
the solution under consideration, it does not correspond to a

Table 1 Conserved (Noether) currents and charges of free-space electromagnetism
and their value for the knots considered here. The centre column gives
expressions for the energy density (corresponding to time-translation invariance),
momentum density (space translations), angular momentum density (rotations),
boost vector density (Lorentz boosts), special conformal current and charge
densities (special conformal transformations, SCT) and dilation charge density
(scale invariance). Expressions for the more familiar non-SCT currents can be
found in most classical field-theory texts. The special conformal current and
charge were computed following the Noether procedure for the special conformal
transformations33. The rightmost column gives the values of the currents and
charges carried by the knots obtained by integrating the current densities over all
space. The length scale a= 1 and the values are rescaled by the energy density.

Charge Density Value

Energy (E ) 1
2 (E·E+B·B) 1

Momentum (P ) E×B (0,0, 1
2 )

Ang. mom. (L ) (E×B)×x (0,0,− 1
2 )

Boost vector Ex−Pt (0,0,0)
SCT (q) (x2+ t 2 )E+ tP·x 1
SCT (v) 2x(P·x)−2tEx−x2P (0,0, 1

2 )
Dilation P·x− Et 0

space-time symmetry; rather, it is a topological invariant4. Indeed,
the linking number is not conserved for a general free-space
electromagnetic field, but only for fields that satisfy

∂t

∫
A ·B ∝

∫
E ·B = 0.

In the case of the Hopf fields defined in equation (2), E ·B = 0
guarantees the conservation of linking number.

For problems with spherical symmetry, a natural basis for
representing electromagnetic fields is that of the vector spherical
harmonics (VSPHs). Labelled by angular-momentum integers
l ≥ 1 and −l ≤ m ≤ l, wavevector k and polarization TE/TM
(electric/magnetic field transverse to the radial direction), the
vector potential Alm(k,r) for the VSPHs is21

ATE
lm(k,r) = 1

iω
fl(kr)LYlm(θ,φ),

ATM
lm (k,r) = 1

k2
∇×

[
fl(kr)LYlm(θ,φ)

]
,

where L = −ir × ∇, Ylm are spherical harmonics and fl(kr) is
a linear combination of the spherical Bessel functions jl(kr),
nl(kr), determined by boundary conditions. In free space
fl(kr) = jl(kr)/

√
l(l +1). A general free-space vector potential

A(r, t) can be expressed in the spherical harmonic basis as

A(r, t) =
∫

dk
∞∑

l=1

l∑

m=−l

[αTM
lm (k)ATM

lm (k,r)

+ αTE
lm(k)ATE

lm(k,r)]e−iωt +c.c. (3)

We present the decomposition of the Hopf electromagnetic field in
this basis (see Supplementary Information, Methods S1), revealing
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Figure 2 Time evolution of the field lines and energy density of the Hopf knot. a,b, Time evolution of the electric field lines (green) (a) and of the magnetic field lines
(black) shown together with the electric field lines for reference (b; see also Supplementary Information, Videos S1–S3). At time t= 0, the Hopf fibration discussed in Fig. 1
can be clearly recognized with the n fibres aligned with the x (electric-field) and y (magnetic-field) axes, and the s fibres lying in the y–z (electric-field) and x–z
(magnetic-field) planes, centred on the origin. The same sets of fibres are shown at times t= 0.5 and 1. c, Time evolution of the energy density, which is initially spherical
and then propagates and expands like an ‘opening umbrella’ along the z axis. The fibration can be seen to locally rotate about the z axis as well as expanding and deforming,
with the structure remaining centred on the centre of energy of the knot. The rotation and deformation seen at these times slows down dramatically at subsequent times (see
Fig. 4e), in an analogous way to the variation of the Gouy phase of a focused Gaussian beam20. The electric and magnetic field lines remain perpendicular everywhere
throughout the time evolution.

the following remarkably simple structure:

AHopf(r, t) =
√

4

3π

∫
dk k3e−k

[
ATE

1,1(k,r)

− iATM
1,1 (k,r)

]
e−iωt +c.c.; (4)

the Hopf field is a superposition of TE and TM vector spherical
harmonics corresponding to a single multipole (l = m = 1), a
relative phase factor i and an energy spectrum

S(ω) ∼ ωe−ω . (5)

Strikingly, the superposition ATE − iATM is an eigenstate of the
curl operator, that is, it satisfies the eigenvalue equation

∇× [ATE
lm(k)± iATM

lm (k)] =∓k[ATE
lm(k)± iATM

lm (k)].

Such eigenstates, known as Chandrasekhar–Kendall (CK)2 states
for constant k, are part of a family of fields known as force-free
fields and are of broad importance in plasma physics and fluid
dynamics22–24. The Hopf fields are therefore a pulsed version of the
CK curl eigenstate fields with energy spectrum ωe−ω.

To understand how such a simple superposition (equation (4))
gives rise to the remarkable field-line structure of the Hopf field, we
begin by studying, in Fig. 3, the field lines of the single-frequency
curl eigenstates, which have the unique property that the electric,
magnetic and A-field lines have the same structure up to a rotation
(B = ∇×A = ±kA,E = −Ȧ = iωA). The ATE

1,1 and iATM
1,1 field lines

are symmetric under rotations about the centre axis and separate
into sets of nested tori, with each set centred on zeros of the
field. The ATE

1,1 field lines follow one and the iATM
1,1 lines the other

circumference of each torus. A superposition will therefore have
field lines that stay confined and wrap around the tori with linking
(winding ratio) that depends on the field strength (Fig. 3b).

To understand the step from the single-frequency curl
eigenstates to a Hopf configuration, it is necessary to take the energy
spectrum into consideration. To nest all tori about the same s
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a b

Figure 3 Field-line structure of single-frequency CK curl eigenstates. For such states, the electric, magnetic and A-field lines have similar structure. a, Field lines of ATE
1,1

(white) and iATM
1,1 (black) spherical harmonic fields at time t= 0. Both sets of field lines are symmetric under rotations about the centre axis. TheATE

1,1 field lines make up a
collection of sets of nested deformed tori with the field lines following one of the torus circumferences. The iATM

1,1 are circles centred on and perpendicular to the centre axis
and therefore follow the other circumference of the nested tori. The field-line direction is reversed in the centre of each set, corresponding to zeros in the field strength. A
superposition of ATE

1,1 and iA
TM
1,1 will therefore have field lines that wrap around the tori and stay confined to them; the ratio of the winding around each circumference will vary

depending on the strength of the field at these points. b, Some of the resulting field lines on different tori, with different winding ratios.
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Figure 4 A generalization of the Hopf fields on the basis of the VSPHs, obtained using l= 2,m= 2 multipole fields and the spectrum of equation (5). a–c, The
magnetic (red) and electric (yellow) field lines at time t= 0. d, within these field lines we have numerically found a set of fibres that are analogous to the s and n fibres of the
Hopf fields in that their structure is preserved by time evolution. There are two (red) lines analogous to the s fibre and four analogous to the n fibre. e, The time evolution of
the s and n fibres for the Hopf field for comparison. f, The structure of the fibres analogous to the n fibre can be better understood by picking a pair and allowing it to ‘relax’
using a package for representing knots32, revealing doubly linked trefoil knots.
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fibre, the spectrum must ‘eliminate’ all zeros of the radial function,
effectively giving rise to a field without oscillations. This is achieved
by the spectrum in equation (5). Interestingly, this spectrum is close
to one used in research on single-cycle light ‘bullets’25 based on
the fields of Ziolkowski26, whose defining property is the absence
of oscillations.

We now consider how the linking is preserved in time. A curl
eigenstate has conserved helicity because its helicity integral is
proportional to the norm of the state. A calculation of the helicity
integral (equation (1)) for a general field in the CK basis gives

L ∝
∫

dk

k3

[
|α+

lm(k)|2 − |α−
lm(k)|2

]

− 1

2

[
α+

lm(k)α+
l,−m(k)−α−

lm(k)α−
l,−m(k)

]
e−i2ωt +c.c.,

where α± = 1√
2
(αTE ± iαTM) of equation (3) are the coefficients

of the CK eigenstates. Only the second term is time dependent;
the absence of ((l, m), (l,−m)) pairs therefore guarantees the
conservation of helicity. The conserved part (first term) of the
linking number is proportional to the difference between the
amplitudes of the + and − CK states.

The understanding gained above suggests a route to
generalizing these solutions: taking superpositions of curl states
with different values of l and m and a similar energy spectrum. The
result for l = 2, m = 2, is shown in Fig. 4. Not all the field lines are
closed and link in the same way, as is the case for the Hopf fields;
however, fibres analogous to the s and p fibres of the Hopf knot can
be found. These fibres close, follow the energy density and have a
fixed linking structure in the form of two intertwined trefoil knots.
In addition, we note that by varying the relative strength of the
TE and TM components in the single-frequency building blocks,
pATE + iqATM, all possible torus knots with winding p,q can be
produced at time t = 0.

We now turn to the possibility of an experimental realization
using laser fields. A simple argument suggests that the relative phase
factor of the CK building blocks may be fairly robust: pure TE
and TM free-space VSPHs are a simple superposition of out-going
and in-going VSPHs; their time-averaged Poynting vector is indeed
purely azimuthal. The only way to construct a pure multipole
field that propagates along the z axis in free space is by taking
a superposition of TE and TM fields with a phase i; therefore,
any propagating pure multipole is a Chandrasekhar–Kendall
curl eigenstate.

The fact that the Hopf fields are built of CK states with only
one value of l and m suggests Laguerre–Gaussian beams20 as a
good starting point for their production; these are pure angular-
momentum eigenstates of the paraxial wave equation and are used
as a basis to model laser beams. Though studied extensively, only
recently has the relation between strongly focused laser beams and
VSPHs received some attention27,28, motivated in part by optical
tweezing. Using the code developed in ref. 28 provided to us
by the authors, we found that a strongly focused zeroth-order
Gaussian beam with circular polarization converges towards a pure
l = 1,m = 1 multipole field as the focusing angle increases toward
90◦. This suggests that an experimental implementation of the CK
basis states may be simpler than we might expect. To create the
full Hopf field we would start with a single- or few-cycle pulsed
beam of circularly polarized light29 and focus it tightly. The pulse
shape and spatial profile could be further controlled with a spatial
light modulator using holographic techniques30, which have been
recently used to produce, for example, pure Airy beams31.

In conclusion, we have investigated the physical properties
of an exceptional solution of the charge-free Maxwell equations
in which all field lines are linked once with one another. The
decomposition into vector spherical harmonics has revealed the
relation to eigenstates of the curl operator, led the way to new field
configurations with multiple linking and given guidance on how to
generate such special solutions in an experiment. Since the class of
electromagnetic knots has both beamlike propagation and unique
properties that have not been explored in this context, we predict
a wide variety of potential applications and theoretical extensions
in areas ranging from colloidal and atomic particle trapping
to manipulating cold atomic ensembles and from generating
soliton-like solutions in nonlinear media to helicity injection for
plasma confinement.
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33. Di Francesco, P., Mathieu, P. & Sénéchal, D. Conformal Field Theory (Springer, New York, 1997).

Supplementary Information accompanies the paper at www.nature.com/naturephysics.

Acknowledgements
We gratefully acknowledge discussions with M. Srednicki, J. Hartle and K. Millett. We thank V. Vitelli,
C. Simon and F. Azhar for comments on the manuscript. W.T.M.I. gratefully acknowledges support
from the English Speaking Union through a Lindemann Fellowship. D.B. acknowledges support from
Marie Curie EXT-CT-2006-042580.

Author information
Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions.
Correspondence and requests for materials should be addressed to W.T.M.I.

720 nature physics VOL 4 SEPTEMBER 2008 www.nature.com/naturephysics

© 2008 Macmillan Publishers Limited.  All rights reserved.

http://npg.nature.com/reprintsandpermissions
http://www.nature.com/naturephysics

	Linked and knotted beams of light
	Figure 1 Construction of the Hopf fibration. 
	Figure 2 Time evolution of the field lines and energy density of the Hopf knot.
	Figure 3 Field-line structure of single-frequency CK curl eigenstates.
	Figure 4 A generalization of the Hopf fields on the basis of the VSPHs, obtained using l=2, m=2 multipole fields and the spectrum of equation{(5)}.
	Table 1 Conserved (Noether) currents and charges of free-space electromagnetism and their value for the knots considered here.
	References
	Acknowledgements
	Author information

