in quantum physics, Heisenberg's demon does not express the impossibility of measuring both the speed and the position of a particle on the grounds of a subjective interference of the measure with the measured, but it measures exactly an objective state of affairs that leaves the respective position of two of its particles outside of the field of its actualization, the number of independent variables being reduced and the values of the coordinates having the same probability. ...Perspectivism, or scientific relativism, is never relative to a subject: it constitutes not a relativity of truth but, on the contrary, a truth of the relative, that is to say, of variables whose cases it orders according to the values it extracts from them in its system of coordinates ...
The differences within physics between wave and particle theories of matter, the indeterminacy principle discovered by Heisenberg, Einstein's relativity theory, all are accommodations to the impossibility of arriving at a unified field theory, one in which the ``anomaly'' of difference for a theory which posits identity may be resolved without challenging the presuppositions of science itself.For further development of these ideas, see Aronowitz (1988a, 524-525, 533).
I may perhaps here remind you of the extent to which in certain societies the roles of men and women are reversed, not only regarding domestic and social duties but also regarding behaviour and mentality. Even if many of us, in such a situation, might perhaps at first shrink from admitting the possibility that it is entirely a caprice of fate that the people concerned have their specific culture and not ours, and we not theirs instead of our own, it is clear that even the slightest suspicion in this respect implies a betrayal of the national complacency inherent in any human culture resting in itself.
Instead of a simple ``either/or'' structure, deconstruction attempts to elaborate a discourse that says neither ``either/or'', nor ``both/and'' nor even ``neither/nor'', while at the same time not totally abandoning these logics either.See also McCarthy (1992) for a thought-provoking analysis that raises disturbing questions about the ``complicity'' between (nonrelativistic) quantum physics and deconstruction.
Linear causality assumes that the relation of cause and effect can be expressed as a function of temporal succession. Owing to recent developments in quantum mechanics, we can postulate that it is possible to know the effects of absent causes; that is, speaking metaphorically, effects may anticipate causes so that our perception of them may precede the physical occurrence of a ``cause.'' The hypothesis that challenges our conventional conception of linear time and causality and that asserts the possibility of time's reversal also raises the question of the degree to which the concept of ``time's arrow'' is inherent in all scientific theory. If these experiments are successful, the conclusions about the way time as ``clock-time'' has been constituted historically will be open to question. We will have ``proved'' by means of experiment what has long been suspected by philosophers, literary and social critics: that time is, in part, a conventional construction, its segmentation into hours and minutes a product of the need for industrial discipline, for rational organization of social labor in the early bourgeois epoch.The theoretical analyses of Greenberger et al. (1989,1990) and Mermin (1990,1993) provide a striking example of this phenomenon; see Maudlin (1994) for a detailed analysis of the implications for concepts of causality and temporality. An experimental test, extending the work of Aspect et al. (1982), will likely be forthcoming within the next few years.
How can one decide whether an observation made in a train about the behaviour of a falling stone can be made to coincide with the observation made of the same falling stone from the embankment? If there are only one, or even two, frames of reference, no solution can be found since the man in the train claims he observes a straight line and the man on the embankment a parabola. ...In the end, as Latour wittily but accurately observes, special relativity boils down to the proposition thatEinstein's solution is to consider three actors: one in the train, one on the embankment and a third one, the author [enunciator] or one of its representants, who tries to superimpose the coded observations sent back by the two others. ...
[W]ithout the enunciator's position (hidden in Einstein's account), and without the notion of centres of calculation, Einstein's own technical argument is ununderstandable ...
[pp. 10-11 and 35, emphasis in original]
more frames of reference with less privilege can be accessed, reduced, accumulated and combined, observers can be delegated to a few more places in the infinitely large (the cosmos) and the infinitely small (electrons), and the readings they send will be understandable. His [Einstein's] book could well be titled: `New Instructions for Bringing Back Long-Distance Scientific Travellers'. [pp. 22-23]Latour's critical analysis of Einstein's logic provides an eminently accessible introduction to special relativity for non-scientists.
in a universe dominated by photons, gravitons, and neutrinos, that is, in the very early universe, the theory of special relativity suggests that any distinction between before and after is impossible. For a particle traveling at the speed of light, or one traversing a distance that is in the order of the Planck length, all events are simultaneous.However, I cannot agree with Argyros' conclusion that Derridean deconstruction is therefore inapplicable to the hermeneutics of early-universe cosmology: Argyros' argument to this effect is based on an impermissibly totalizing use of special relativity (in technical terms, ``light-cone coordinates'') in a context where general relativity is inescapable. (For a similar but less innocent error, see Note 40 below.)
In contemporary physics and astrophysics ...a particle has a sort of elementary memory and consequently a temporal filter. This is why contemporary physicists tend to think that time emanates from matter itself, and that it is not an entity outside or inside the universe whose function it would be to gather all different times into universal history. It is only in certain regions that such - only partial - syntheses could be detected. There would on this view be areas of determinism where complexity is increasing.Furthermore, Michel Serres (1992, 89-91) has noted that chaos theory (Gleick 1987) and percolation theory (Stauffer 1985) have contested the traditional linear concept of time:
Time does not always flow along a line ...or a plane, but along an extraordinarily complex manifold, as if it showed stopping points, ruptures, sinks [puits], funnels of overwhelming acceleration [cheminées d'accélération foudroyante], rips, lacunae, all sown randomly ...These multiple insights into the nature of time, provided by different branches of physics, are a further illustration of the complementarity principle.Time flows in a turbulent and chaotic manner; it percolates. [Translation mine. Note that in the theory of dynamical systems, ``puits'' is a technical term meaning ``sink'', i.e. the opposite of ``source''.]
Right-wing critics Gross and Levitt (1994, 79) have ridiculed this statement, willfully misinterpreting it as an assertion about special relativity, in which the Einsteinian constant c (the speed of light in vacuum) is of course constant. No reader conversant with modern physics - except an ideologically biased one - could fail to understand Derrida's unequivocal reference to general relativity.
The Newtonian break has ushered scientific enterprise into a world where sense perception is worth little, a world which can lead to the annihilation of the very stakes of physics' object: the matter (whatever the predicates) of the universe and of the bodies that constitute it. In this very science, moreover [d'ailleurs], cleavages exist: quantum theory/field theory, mechanics of solids/dynamics of fluids, for example. But the imperceptibility of the matter under study often brings with it the paradoxical privilege of solidity in discoveries and a delay, even an abandoning of the analysis of the infinity [l'in-fini] of the fields of force.I have here corrected the translation of ``d'ailleurs'', which means ``moreover'' or ``besides'' (not ``however'').
Radical critiques of science that seek to escape the constraints of deterministic dialectics must also give over narrowly conceived debates about realism and truth to investigate what kind of realities - political realities - might be engendered by a dialogical bootstrapping. Within a dialogically agitated environment, debates about reality become, in practical terms, irrelevant. ``Reality,'' finally, is a historical construct.See Markley (1992, 266-272) and Hobsbawm (1993, 63-64) for further discussion of the political implications.
in his [Pickering's] account, quarks are the name assigned to (absent) phenomena that cohere with particle rather than field theories, which, in each case, offer different, although equally plausible, explanations for the same (inferred) observation. That the majority of the scientific community chose one over another is a function of scientists' preference for the tradition rather than the validity of explanation. However, Pickering does not reach back far enough into the history of physics to find the basis of the research tradition from which the quark explanation emanates. It may not be found inside the tradition but in the ideology of science, in the differences behind field versus particle theories, simple versus complex explanations, the bias toward certainty rather than indeterminateness.Along very similar lines, Markley (1992, 269) observes that physicists' preference for quantum chromodynamics over Chew's bootstrap theory of ``subatomic democracy'' (Chew 1977) is a result of ideology rather than data:
It is not surprising, in this regard, that bootstrap theory has fallen into relative disfavor among physicists seeking a GUT (Grand Unified Theory) or TOE (Theory of Everything) to explain the structure of the universe. Comprehensive theories that explain ``everything'' are products of the privileging of coherence and order in western science. The choice between bootstrap theory and theories of everything that confronts physicists does not have to do primarily with the truth-value offered by these accounts of available data but with the narrative structures - indeterminate or deterministic - into which these data are placed and by which they are interpreted.Unfortunately, the vast majority of physicists are not yet aware of these incisive critiques of one of their most fervently-held dogmas. For another critique of the hidden ideology of contemporary particle physics, see Kroker et al. (1989, 158-162, 204-207). The style of this critique is rather too Baudrillardian for my staid taste, but the content is (except for a few minor inaccuracies) right on target.
Narratives of scientific progress depend upon imposing binary oppositions - true/false, right/wrong - on theoretical and experimental knowledge, privileging meaning over noise, metonymy over metaphor, monological authority over dialogical contention. ...[T]hese attempts to fix nature are ideologically coercive as well as descriptively limited. They focus attention only on the small range of phenomena - say, linear dynamics - which seem to offer easy, often idealized ways of modeling and interpreting humankind's relationship to the universe.While this observation is informed primarily by chaos theory - and secondarily by nonrelativistic quantum mechanics - it in fact summarizes beautifully the radical challenge to modernist metaphysics posed by quantum gravity.
If you'll permit me to use one of those formulas which come to me as I write my notes, human life could be defined as a calculus in which zero was irrational. This formula is just an image, a mathematical metaphor. When I say ``irrational,'' I'm referring not to some unfathomable emotional state but precisely to what is called an imaginary number. The square root of minus one doesn't correspond to anything that is subject to our intuition, anything real - in the mathematical sense of the term - and yet, it must be conserved, along with its full function.[Lacan (1977, 28-29), seminar originally given in 1959.] For further reflections on irrationality in modern mathematics, see Solomon (1988, 76) and Bloor (1991, 122-125).
Haraway (1989,1991), Plumwood (1993a). See Wylie et al. (1990) for an extensive bibliography. The feminist critique of science has, not surprisingly, been the object of a bitter right-wing counterattack. For a sampling, see Levin (1988), Haack (1992,1993), Sommers (1994),
Gross and Levitt (1994, chap. 5) and Patai and Koertge (1994).
The object of science is not concepts but rather functions that are presented as propositions in discursive systems. The elements of functions are called functives. [p. 117]This apparently simple idea has surprisingly subtle and far-reaching consequences; its elucidation requires a detour into chaos theory (see also Rosenberg 1993 and Canning 1994):
...the first difference between science and philosophy is their respective attitudes toward chaos. Chaos is defined not so much by its disorder as by the infinite speed with which every form taking shape in it vanishes. It is a void that is not a nothingness but a virtual, containing all possible particles and drawing out all possible forms, which spring up only to disappear immediately, without consistency or reference, without consequence. Chaos is an infinite speed of birth and disappearance. [pp. 117-118]But science, unlike philosophy, cannot cope with infinite speeds:
...it is by slowing down that matter, as well as the scientific thought able to penetrate it [sic] with propositions, is actualized. A function is a Slow-motion. Of course, science constantly advances accelerations, not only in catalysis but in particle accelerators and expansions that move galaxies apart. However, the primordial slowing down is not for these phenomena a zero-instant with which they break but rather a condition coextensive with their whole development. To slow down is to set a limit in chaos to which all speeds are subject, so that they form a variable determined as abscissa, at the same time as the limit forms a universal constant that cannot be gone beyond (for example, a maximum degree of contraction). The first functives are therefore the limit and the variable, and reference is a relationship between values of the variable or, more profoundly, the relationship of the variable, as abscissa of speeds, with the limit. [pp. 118-119, emphasis mine]A rather intricate further analysis (too lengthy to quote here) leads to a conclusion of profound methodological importance for those sciences based on mathematical modelling:
The respective independence of variables appears in mathematics when one of them is at a higher power than the first. That is why Hegel shows that variability in the function is not confined to values that can be changed ((Note that the English translation inadvertently writesand
) or are left undetermined (a=2b) but requires one of the variables to be at a higher power (
). [p. 122]
The decay of the families of men who occupied conspicuous positions in past times has been a subject of frequent research, and has given rise to various conjectures ...The instances are very numerous in which surnames that were once common have since become scarce or have wholly disappeared. The tendency is universal, and, in explanation of it, the conclusion has hastily been drawn that a rise in physical comfort and intellectual capacity is necessarily accompanied by a diminution in `fertility' ... LetOne cannot fail to be charmed by the quaint implication that human males reproduce asexually; nevertheless, the classism, social-Darwinism and sexism in this passage are obvious. The second example is Laurent Schwartz's 1973 book on Radon Measures. While technically quite interesting, this work is imbued, as its title makes plain, with the pro-nuclear-energy worldview that has been characteristic of French science since the early 1960's. Sadly, the French left - especially but by no means solely the PCF - has traditionally been as enthusiastic for nuclear energy as the right (see Touraine et al. 1980).be the respective probabilities that a man has
sons, let each son have the same probability of sons of his own, and so on. What is the probability that the male line is extinct after r generations, and more generally what is the probability for any given number of descendants in the male line in any given generation?
transnational corporations - first in Japan and later elsewhere - to solve practical problems of efficiency in labor-displacing automation.
I'm quite skeptical of the ``anything goes'' spirit that is often the prevailing climate of relativism around postmodernism. ...Much of the postmodernist debate has been devoted to grappling with the philosophical or cultural limits to the grand narratives of the Enlightenment. If you think about ecological questions in this light, however, then you are talking about ``real'' physical, or material, limits to our resources for encouraging social growth. And postmodernism, as we know, has been loath to address the ``real,'' except to announce its banishment.