II. Quantum Materials for Energy Efficient Neuromorphic-Computing
The aim of this project is to design, create and study oscillators that can function as the neurons and synapses in a neuromorphic computer. This includes creating spin-Hall nano-oscillators with Josephson-junction-like dynamics (but function at room temperature and even higher temperatures).
In spin Hall nano oscillators, the phase ϕ of the magnetization plays the role of the superconducting phase difference δ in a Josephson junction, i.e.,
A spin oscillator can generate voltage or current spikes that can encode information.
For more information see:
Axel Hoffmann, Shriram Ramanathan, Julie Grollier, Andrew D. Kent, Marcelo J. Rozenberg, Ivan K. Schuller, Oleg G. Shpyrko, Robert C. Dynes, Yeshaiahu Fainman, Alex Frano, Eric E. Fullerton, Giulia Galli, Vitaliy Lomakin, Shyue Ping Ong, Amanda K. Petford-Long, Jonathan A. Schuller, Mark D. Stiles, Yayoi Takamura, and Yimei Zhu, “Quantum materials for energy-efficient neuromorphic computing: Opportunities and challenges,” APL Materials 10, 070904 (2022). full text (pdf form)
Danijela Markovic, Matthew W. Daniels, Pankaj Sethi, Andrew D. Kent, Mark D. Stiles, and Julie Grollier, “Easy-plane spin Hall nano-oscillators as spiking neurons for neuromorphic computing,” Physical Review B 105, 014411 (2022). full text (pdf form)
Jun Wen Xu, Yizhang Chen, Nicolás M. Vargas, Pavel Salev, Pavel N. Lapa, Juan Trastoy, Julie Grollier, Ivan K. Schuller & Andrew D. Kent, “A quantum material spintronic resonator,” Scientific Reports 11, 15082 (2021). full text (pdf form)