Holographic characterization of individual colloidal spheres' porosities
Abstract.
Holograms of colloidal spheres recorded through holographic video microscopy can be analyzed with the theory of light scattering to measure individual spheres' sizes and refractive indexes with part-per-thousand resolution. This information, in turn, can be interpreted to estimate each sphere's porosity.
§ I. Introduction
Synthetic colloidal spheres play a central role in applications as diverse as catalysis, medical diagnostics, and photonics. Even as many applications advance toward single-sphere implementations, methods for characterizing colloidal spheres typically offer only sample-averaged overviews of such properties as spheres' sizes and porosities. Moreover, such characterization methods as mercury adsorption porosimetry, nitrogen isotherm porosimetry, transmission electron microscopy and x-ray tomography require preparatory steps that may affect particles' properties. Here, we demonstrate that holographic video microscopy can meet this need for particle-resolved in situ characterization, and that results of these optical measurements can be interpreted to measure individual spheres' porosities.
§ II. Holographic Particle Characterization
Our measurements are based on in-line holographic video
microscopy (1); (2) in which individual colloidal
spheres are illuminated by the collimated beam from a fiber-coupled
laser (iFlex Viper)
on the stage of an otherwise conventional light microscope
(Nikon TE 2000U).
Light scattered by a sphere interferes with the unscattered
portion of the beam in the focal plane of the microscope's
objective lens (Nikon Plan-Apo, , numerical aperture 1.4,
oil immersion).
The interference pattern is magnified by the microscope, and
its intensity is recorded with a video camera
(NEC TI-324AII) at
with a resolution of
.
The example in Fig. 1(a) shows the hologram of
a polystyrene sphere dispersed in water obtained at a vacuum
wavelength of
.









Each sphere's image is digitized with a nominal intensity resolution of
8 bits/pixel and analyzed (3); (4) using
predictions of the Lorenz-Mie theory of light scattering
(5)
to obtain the particle's position in three dimensions (6),
its radius, and its complex refractive index (3); (4).
Fig. 1(b) shows the pixel-by-pixel fit to the
measured hologram in Fig. 1(a).
The microscope is defocused for these measurements so that each
sphere's interference pattern subtends a
field of view.
Fits then reliably
yield estimates for
the adjustable parameters with part-per-thousand resolution
(3); (4).
Each data point in Fig. 1(c) represents
the radius and refractive index of a particular silica sphere,
with error bars comparable in size to the plot symbol (4).
The entire plot comprises results for 1,000 spheres selected
at random from a monodisperse sample
(Duke Scientific, catalog number 8150),
with plot symbols colored according to the sample-estimated
relative probability density (7), ,
for finding a sphere of radius
and refractive index
.
These data were obtained by flowing the aqueous dispersion
through a microfluidic channel past the observation
volume at a peak speed of
.
This is slow enough that motion blurring has no measurable
influence on the characterization results (4); (8).
The suspension was diluted with deionized water to the point
that no more than 10 spheres
were in the field of view at any time, thereby minimizing
overlap between neighboring spheres' scattering patterns.
The entire data set was acquired in 5 min.
The spheres' average radius
is consistent with the
manufacturer's specification.
By contrast, the mean refractive index
is significantly smaller than the value of
for fused silica at the imaging wavelength
(9).
Similar discrepancies have been reported in previous
measurements on dispersions of colloidal silica spheres
(10).
The data in Fig. 1(c) also reveal a distinct anticorrelation between radius and refractive index. Such a relationship could not have been detected with bulk probes, such as dynamic light scattering. It suggests that the larger particles in a sample are less optically dense than those on the smaller end of the size distribution.

The data in Fig. 2 further demonstrate that
this anticorrelation is not an artifact of the technique,
but rather is a common feature of colloidal samples synthesized
by emulsion polymerization.
Figure 2(a) shows results for a very polydisperse
sample of silicone oil droplets (Dow Corning 200 fluid)
stabilized with Pluronic L92 surfactant in water.
Although the range of particle radii is large, the droplets'
measured refractive indexes all are consistent with the bulk
value of to within the part-per-thousand
resolution of the single-particle fits (3); (4).
This is reasonable because the droplets all should
be composed of fluid at bulk density.
Results for smaller droplets
are more strongly influenced by the surfactant
(11),
which has a bulk refractive index of 1.38. Variation in surfactant
coverage thus causes variation in the apparent refractive index.
The peak of the probability distribution nevertheless falls within
error estimates of the refractive index of bulk silicone oil
for all sizes.
The lack of covariance between measured radii and refractive
indexes in this sample therefore demonstrates the absence
of instrumental or analytical bias.
The data in Fig. 2(b) and Fig. 2(c) show additional results for monodisperse aqueous dispersions of colloidal polystyrene spheres (Duke Scientific, catalog number 5153) and colloidal polymethymethacrylate (PMMA, Bangs Laboratory, catalog number PP04N) spheres, respectively, both synthesized by emulsion polymerization. Like the silica spheres in Fig. 1, both of these samples yield mean refractive indexes significantly lower than bulk values at the imaging wavelength and also display anticorrelations between size and refractive index.
§ III. Holographic Porosimetry
Chemically synthesized colloidal spheres are known to be less
dense than the bulk material from which they are formed
(12); (13).
The difference may take the form of voids that can be
filled with other media, such as the fluid in which
the spheres are dispersed (10).
A sphere's porosity is the fraction of its volume
comprised of such pores.
If the pores are distributed uniformly throughout the sphere
on lengthscales smaller than the wavelength of light,
their influence on the sphere's refractive index may be
estimated with effective medium theory (14).
Specifically, if the bulk material has refractive index
and the pores have refractive index
then
the sphere's porosity is related to its
effective refractive index
by
the Lorentz-Lorenz relation (14); (15).
![]() |
(1) |
where .
Provided that
can be determined,
Eq. (1) provides a basis for measuring
the porosity of individual colloidal spheres in situ.
The value of is readily obtained in two limiting cases.
If the suspending medium wets the particle, then it also is
likely to fill its pores. In that case, we expect
, where
is refractive index of the medium.
If, at the other extreme, the particle repels the solvent, then
the pores might better be treated as voids with
.
An idealized model for single-particle porosity
offers a way to distinguish these cases, and thereby
to obtain information on the nature of the medium in
the sphere's pores.
We model a colloidal sphere as an
aggregate of monomers of specific volume
.
Assuming a typical sphere to be comprised of a large
number of monomers, and further assuming that all of the
spheres in a dispersion grow under similar conditions,
the probability distribution for the number of monomers
in a sphere is given by the central limit theorem:
![]() |
(2) |
where is the mean number of monomers in a sphere
and
is the variance in that number.




Were each sphere to grow at its bulk density, its
volume would be .
Development of porosity
during the growth process
increases the growing sphere's volume to
![]() |
(3) |
The probability distribution for finding a sphere
of volume therefore depends on the porosity:
![]() |
(4) |
where .
If the porosity develops uniformly as a particle grows,
then the probability distribution
of particle porosities will be independent of
size.
In that case, the joint probability
![]() |
(5) |
may be factored into a term that depends only on porosity
and another that depends only on the rescaled volume
.
Within the assumptions of this model, the correct choice
for should decorrelate the rescaled volume
and the porosity
.
We therefore select the value of
for which the
Pearson's correlation coefficient between
and
vanishes.
The scatter plots in Fig. 3
show the distribution of particle volumes and porosities
obtained with these optimal values of
.
The upper plots show
estimates for
obtained by integration over
, together
with fits to the anticipated Gaussian form.
Agreeiment is good enough in all three cases to justify the use of
Eq. (4) to interpret the experimental data.
The results for the silica sample in Fig. 3(a)
were obtained using for fused silica
(9).
The estimated value of
is consistent with the value of 1.3324 for water at the
imaging wavelength (16).
This suggests that pores in the hydrophilic silica spheres are
filled with water.
The associated mean porosity,
,
is comparable to the 8 percent porosity determined by low-temperature
nitrogen adsorption for similar samples (17).
The equivalent results for the polystyrene sample
in Fig. 3(b) were obtained using
for bulk polystyrene (18); (19); (20).
In this case, the estimated value of
is substantially smaller
than the refractive index of either water or styrene.
Rather than solvent-filled voids, the pores in the spheres
seem rather to represent
density fluctuations in the cross-linked polymer matrix.
The failure of water to invade these pores is consistent
with the hydrophobicity of polystyrene.
With these choices for
and
,
the sample-averaged porosity is estimated to be
.
More surprisingly, the results for water-borne PMMA spheres plotted in
Fig. 3(c) yield , and therefore
suggest that the spheres' pores are filled with water, even
though PMMA is hydrophobic.
The porosity,
, estimated using
for bulk PMMA,
is comparable to previously reported values for similar spheres
(21).
Whereas the polystyrene spheres appear to exclude water, the substantially
less porous PMMA spheres seem to imbibe it.
These observations
suggest either that the two samples have substantially
different pore morphologies, or else that
hydrophilic groups are present within the pores of the PMMA sample.
Values obtained for single-particle porosities should be
interpreted with care. Our model assumes that a particles'
pores are distributed uniformly and have uniform optical
properties.
Departures from these assumptions will have little effect
on the precision of the porosity estimates, which is governed
by the precision of the measurement for . Rather, they
give rise to systematic errors.
Similarly, uncertainty in the values for
and
contribute
to systematic offsets in
through Eq. (1).
The precision
of the porosity distributions in Fig. 3 therefore
need not guarantee their accuracy.
§ IV. Conclusions
We have shown that correlations in the radii and refractive indexes of colloidal spheres measured through holographic particle characterization (3); (4) can be ascribed to porosity. Holographic characterization, therefore, can be used to assess the porosity of individual colloidal spheres and to gain insight into the medium filling their pores.
The present implementation uses sample averages to infer the refractive index of the medium filling the individual spheres' pores. Given this parameter, the porosity can be estimated for each sphere individually. The need to aggregate data from multiple particles could be eliminated by performing holographic characterization measurements in multiple wavelengths simultaneously. The resulting spectroscopic information, in principle, could be used to characterize both the porosity of a single sphere and also the medium filling its pores in a single snapshot.
Particle-resolved porosimetry probes the mechanisms by which porosity develops in samples of emulsion-polymerized colloidal spheres. For the samples we have studied, porosity appears to have developed uniformly as the particles grew, both within individual spheres, and throughout the sample as a whole. Differences between results for polystyrene and PMMA samples point to possible differences in the shapes or properties of their pores. These observations, in turn, have ramifications for possible uses of emulsion polymerized colloidal particles in such applications as catalysis, bead-based medical diagnostics and colloidal photonics.
§ V. Acknowledgments
This work was supported in part by the MRSEC program of the National Science Foundation through Grant Number DMR-0820341 and in part by the NSF through Grant Number DMR-0922680.
References
-
(1)
J. Sheng, E. Malkiel, and J. Katz, ``Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
-
(2)
S.-H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007).
-
(3)
S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18,275–18,282 (2007).
-
(4)
F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13,071–13,079 (2009).
-
(5)
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).
-
(6)
F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, ``Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13,563–13,573 (2010).
-
(7)
B. W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman & Hall, New York, 1992).
-
(8)
L. Dixon, F. C. Cheong, and D. G. Grier, “Holographic particle-streak velocimetry,” Opt. Express 19, 4393–4398 (2011).
-
(9)
I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
-
(10)
F. García-Santamaría, H. Míguez, M. Ibisate, F. Meseguer, and C. López, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18, 1942–1944 (2002).
-
(11)
F. C. Cheong, K. Xiao, and D. G. Grier, “Characterization of individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009).
-
(12)
K. Schumacher, M. Grün, and K. K. Unger, “Novel synthesis of spherical MCM-48,” Microporous Mesoporous Mat. 27, 201–206 (1999).
-
(13)
A. Ahmed, R. Clowes, E. Willneff, H. Ritchie, P. Myers, and H. Zhang, “Synthesis of uniform porous microspheres with hydrophilic polymer as stabilizing agent,” Ind. Eng. Chem. Res. 49, 602–608 (2010).
-
(14)
D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
-
(15)
M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).
-
(16)
The International Association for the Properties of Water and Steam, “Release on the Refractive Index of Ordinary Water Substance as a Function of Wavelength, Temperature and Pressure,” Tech. rep., IAPWS, Erlangen, Germany (1997).
-
(17)
R. Vacassy, R. J. Flatt, K. S. Choi, and R. K. Singh, “Synthesis of microporous silica spheres,” J. Colloid Interface Sci. 227, 302–315 (2000).
-
(18)
I. D. Nikolov and C. D. Ivanov, “Optical plastic refractive measurements in the visible and the near-infrared regions,” Appl. Opt. 39, 2067–2070 (2000).
-
(19)
F. Ay, A. Kocabas, C. Kocabas, A. Aydinil, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96, 7147–7153 (2004).
-
(20)
S. N. Kasarova, N. G. Sultanova, D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mat. 29, 1481–1490 (2007).
-
(21)
S.-E. Phan, W. B. Russel, Z. Cheng, J. Zhu, P. M. Chaikin, J. H. Dunsmuir, and R. H. Ottewill, “Phase transition, equation of state, and limiting shear viscosities of hard sphere dispersions,” Phys. Rev. E 54(6), 6633–6645 (1996).