Projecting Extended Optical Traps with Shape-Phase Holography
Abstract.
We describe a method for projecting single-beam optical traps whose potential energy wells are extended along one-dimensional curves. This technique exploits shape-phase holography in which computer-generated phase-only diffractive optical elements are used to implement complex and amplitude-only holograms. The resulting optical traps can have specified intensity and phase profiles along their lengths and can extend along curves in three dimensions. We demonstrate the extended traps' operation and characterize their potential energy profiles through digital video microscopy of trapped colloidal spheres.
Created by bringing a beam of light to a sharp focus, an optical tweezer establishes a potential energy well that confines mesoscopic objects in three dimensions. This Letter describes a generalized optical tweezer whose domain of influence extends along a specified curve with specified intensity and phase profiles. Such extended optical traps establish tailored potential energy landscapes along their lengths while rigidly confining trapped objects in transverse directions. These capabilities can be exploited for orienting and assembling anisotropic objects such as nanowires (1); (2), rapidly assessing inter-particle forces in colloidal dispersions (3); (4); (5), and continuously fractionating fluid-borne objects (6); (7).
The archetypal extended optical trap is a so-called line tweezer, in which an appropriately structured beam of light focuses to a line segment rather than a point. Such extended optical traps have been created in a time-averaged sense by scanning a single conventional optical tweezer rapidly across the field of view (8); (9); (10); (4); (5). Continuously illuminated line tweezers have been implemented interferometrically (11); (12), by modifying conventional optical tweezers with rectangular apertures (13), with cylindrical lenses (1); (14), or with their holographic equivalent (15). When particular care is taken to avoid introducing astigmatism (14) the resulting lines can trap objects stably in three-dimensions. The generalized phase contrast (GPC) method (16) also can project extended traps with arbitrary intensity profiles; three-dimensional trapping can be achieved with counterpropagating GPC traps (17).
Our method, based on the holographic optical trapping technique (18); (19), uses computer-designed diffractive optical elements (DOEs) to implement the complex-valued holograms encoding extended traps, through an approach that we call shape-phase modulation. This method projects extended optical traps with independent control over the intensity and phase profiles along their lengths. It requires only single-sided optical access, lends itself to adaptive optimization (20), and is easily integrated with multi-mode holographic optical traps (21); (22); (19).

Figure 1 schematically represents a typical
holographic optical trapping
train that can be used to project extended optical traps. Here, a
laser (Coherent Verdi, )
provides a beam of light that is brought to a diffraction-limited
focus by an objective lens
(Nikon 100
NA 1.4, oil immersion Plan Apo)
mounted in an inverted optical microscope
(Nikon TE-2000U).
The beam is reflected into the objective's input pupil
by a dichroic mirror that also permits images of trapped
objects to pass through to a CCD camera.
The addition of a DOE in a plane conjugate to the
lens' input aperture enables the system to project both conventional
holographic optical traps as well as extended optical
traps.
In our system, the DOE is
implemented with a computer-addressed spatial light modulator (SLM)
(Hamamatsu X8267 PPM), which imprints a phase pattern,
, discretized into a
array
onto the laser beam's otherwise featureless wavefronts.
The resulting field,
![]() |
(1) |
retains the input beam's amplitude profile and polarization.
When relayed to the objective lens' input aperture, the modified
beam creates the intended optical traps.
An ideal line tweezer focuses as a conical wedge
to a line segment with specified intensity and phase profiles.
This can be achieved in principle by inverting the
Fraunhofer diffraction integral (23) relating the
intended trapping field, , to the field at
the DOE,
,
![]() |
(2) |
Here, is the lens' focal length and
is the
optical train's aperture.
We have omitted irrelevant phase factors in Eq. (2).
For example, the field
![]() |
(3) |
describes a uniformly bright line tweezer of length
with uniform phase
aligned with the
axis
The associated field in the DOE plane is
![]() |
(4) |
This real-valued function cannot be implemented with a conventional phase-only DOE.
To encode through shape-phase modulation,
we separate the desired input field along the line into real-valued
amplitude and phase functions,
![]() |
(5) |
where is a positive definite amplitude.
In the particular case of a uniform line tweezer,
![]() |
![]() |
(6) | ||
![]() |
![]() |
(7) |
The prefactor sets the fraction of the incident light
that is to be projected into the line trap.
If we assume that the DOE is uniformly illuminated, then
may be interpreted as the fraction
of light incident on the DOE at
needed to form the trap.
In projecting a linear trap with a pixellated DOE,
the amplitude function
specifies how many pixels
at
contribute to the hologram, but not which.
For example, a uniform line tweezer can be projected with
![]() |
![]() |
(8) | ||
![]() |
![]() |
(9) |
The shape function divides the plane of the DOE into
assigned (
) and unassigned (
) regions.
Light passing through the unassigned region
can be diverted (22), diffused, or applied to another
task by applying another phase mask,
,
to the unassigned pixels.
Light passing through the assigned region then has both the phase
and amplitude structure needed to form the extended optical
trap.
Figure 1(b) shows a phase-only hologram
that encodes
a uniform line tweezer long according to
Eq. (8).
Light passing through the unassigned pixels is deflected by
a blazed grating to form a conventional optical tweezer
away.
The calculated intensity pattern,
shown in Fig. 1(c), agrees
closely with the actual light distribution measured
by placing a mirror in the
sample plane and collecting
the reflected light with the objective lens, Fig. 1(d).
The line tweezer in
Fig. 1 suffers from two easily remedied
defects.
The analytical shape function described by Eq. (9)
creates transverse artifacts at
the line's ends.
These are eliminated by replacing with a random
distribution that assigns the correct number of pixels in each
column.
The abrupt intensity gradients called for in Eq. (3)
furthermore
exceed a practical DOE's spatial bandwidth, and
so cause oscillatory artifacts.
This is an example of Gibbs phenomenon,
which can be minimized
by modifying the trap's design to reduce gradients, or through
standard numerical methods (24).
The results in Fig. 2 show the
benefits of these corrections.




When powered by 15 f light, each of these line tweezers readily
traps micrometer-scale colloidal spheres in three dimensions, while
allowing them some freedom of motion along the extended axis.
We characterized the extended traps' potential energy profiles for 1.5
diameter polystyrene spheres (Duke Scientific Lot 5238)
by placing a single particle on the line
and tracking its thermally driven motions at 1/30
ntervals
and 10
spatial resolution through digital video
microscopy (25).
The local potential
can be calculated from
the measured probability
to find the particle within
of position
in equilibrium through
![]() |
(10) |
at absolute temperature , where
is an arbitrary reference.
A single particle's trajectory over ten minutes yields the results
in Fig. 2(a).
The longitudinal potential energy profile closely follows the
designed shape and is
deep. The bottom third of
the well is plotted in the inset to Fig. 2(a) together with a fit
to a parabolic profile.
Deviations from the designed shape are smaller than
.
These could be further reduced by adaptive optimization
(26).
The transverse profile is broadened by the sphere's
diameter, as expected (6); (7).
Multiple extended optical traps can be projected with the same DOE
provided their shape functions are disjoint
in the sense that
for
.
The assigned domain then is
.
Other modifications to the phase mask that have been described
in other contexts (27); (26); (28)
can be used to translate the line tweezer along the optical axis,
to correct for aberrations in the optical train, and to account
for such defects in the optical train as phase scaling errors.
Finally,
the shape-phase modulation can be generalized for intensity
modulation of curved tweezers by applying an appropriate
conformal mapping to the phase mask.
This work was supported by the National Science Foundation through grant number DMR-0451589.
References
-
(1)
T. Yu, F.-C. Cheong, and C.-H. Sow, Nanotechnology 15, 1732 (2004).
-
(2)
R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, Opt. Express 13, 8906 (2005).
-
(3)
J. C. Crocker and D. G. Grier, Phys. Rev. Lett. 73, 352 (1994).
-
(4)
R. Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh, Phys. Rev. Lett. 81, 4004 (1998).
-
(5)
J. C. Crocker, J. A. Matteo, A. D. Dinsmore, and A. G. Yodh, Phys. Rev. Lett. 82, 4352 (1999).
-
(6)
K. Ladavac, K. Kasza, and D. G. Grier, Phys. Rev. E 70, 010901(R) (2004).
-
(7)
M. Pelton, K. Ladavac, and D. G. Grier, Phys. Rev. E 70, 031108 (2004).
-
(8)
K. Sasaki, M. Koshio, H. Misawa, N. Kitamura, and H. Masuhara, Opt. Lett. 16, 1463 (1991).
-
(9)
L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, Phys. Rev. Lett. 74, 1504 (1995a).
-
(10)
L. P. Faucheux, G. Stolovitzky, and A. Libchaber, Phys. Rev. E 51, 5239 (1995b).
-
(11)
A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, Opt. Comm. 133, 7 (1997).
-
(12)
E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, Opt. Express 13, 3777 (2005).
-
(13)
A. T. O'Neil, I. MacVicar, L. Allen, and M. J. Padgett, Phys. Rev. Lett. 88, 053601 (2002).
-
(14)
P. L. Biancaniello, A. J. Kim, and J. C. Crocker, Phys. Rev. Lett. 94, 058302 (2005).
-
(15)
K. J. Moh, W. M. Lee, W. C. Cheong, and X.-C. Yuan, Appl. Phys. B 80, 973 (2005).
-
(16)
R. L. Eriksen, V. R. Daria, and J. Glückstad, Opt. Express 10, 597 (2002).
-
(17)
P. J. Rodrigo, V. R. Daria, and J. Glückstad, Appl. Phys. Lett. 86, 074103 (2005).
-
(18)
E. R. Dufresne and D. G. Grier, Rev. Sci. Instr. 69, 1974 (1998).
-
(19)
D. G. Grier, Nature 424, 810 (2003).
-
(20)
Y. Roichman, A. S. Waldron, E. Gardel, and D. G. Grier, Appl. Opt., in press (2005).
-
(21)
J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, Opt. Comm. 185, 77 (2000).
-
(22)
J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Comm. 207, 169 (2002).
-
(23)
J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), 2nd ed.
-
(24)
A. J. Jerri, The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet (Springer, 1998).
-
(25)
J. C. Crocker and D. G. Grier, J. Colloid Interface Sci. 179, 298 (1996).
-
(26)
M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, Opt. Express 13, 5831 (2005).
-
(27)
J. E. Curtis and D. G. Grier, Opt. Lett. 28, 872 (2003).
-
(28)
S.-H. Lee and D. G. Grier, Opt. Express 13, 7458 (2005).