Flow visualization and flow cytometry with holographic video microscopy
Abstract.
The video stream captured by an in-line holographic microscope can be analyzed on a frame-by-frame basis to track individual colloidal particles' three-dimensional motions with nanometer resolution, and simultaneously to measure their sizes and refractive indexes. Through a combination of hardware acceleration and software optimization, this analysis can be carried out in near real time with off-the-shelf instrumentation. An efficient particle identification algorithm automates initial position estimation with sufficient accuracy to enable unattended holographic tracking and characterization. This technique's resolution for particle size is fine enough to detect molecular-scale coatings on the surfaces of colloidal spheres, without requiring staining or fluorescent labeling. We demonstrate this approach to label-free holographic flow cytometry by detecting the binding of avidin to biotinylated polystyrene spheres.
§ I. Introduction
Colloidal spheres are pervasive in natural, industrial and biomedical applications. Here, we describe a rapid and precise method for measuring individual colloidal spheres' radii and refractive indexes as they flow down a microfluidic channel, while simultaneously tracking their three dimensional positions with nanometer resolution. Based on quantitative analysis (1) of images obtained with holographic video microscopy (2); (3), this technique is exceptionally robust against motion blurring (4); (5) and offers near-real-time performance through hardware accelerated image analysis. Its subnanometer resolution for particle sizing is fine enough to detect the presence of molecular coatings on the surface of micrometer-scale colloidal beads and so can be used for label-free molecular binding assays. We demonstrate this by detecting the binding of neutravidin to biotinylated polystyrene spheres.
§ II. Holographic video microscopy
Our in-line holographic video microscope (3); (1), shown
schematically in Fig. 1, is
based on an inverted microscope (Zeiss Axiovert 100 STV)
outfitted with a numerical aperture 1.4 oil immersion
objective (Zeiss S Plan Apo).
The conventional incandescent illumination is replaced with the
collimated coherent beam from a solid-state laser (Coherent Verdi 5W)
operating at a vacuum wavelength of
.
Individual colloidal
spheres scatter a small proportion of the incident beam,
and the scattered light interferes with the unscattered portion
in the focal plane of the microscope's objective lens.
The microscope magnifies the interference pattern and projects
it onto the face of a low-noise gray-scale video camera
(NEC TI 324 IIA), with a total system magnification
of 101
pixel.
The video stream is recorded as uncompressed digital video
with a digital video recorder (Pioneer H520S) for subsequent analysis.
The illuminating beam's fluence is on the order of
1
,
comparable to that of conventional microscope illumination.
The measured intensity at point in the focal plane,
![]() |
(1) |
is the superposition of the incident plane wave, ,
propagating along
and the
scattered wave,
, that
propagates from the particle at
to the
point of observation,
.
This scattered field is described by Lorenz-Mie theory (6)
and depends not only on the particle's position, but also on
its radius,
, and its refractive index,
relative to the refractive index,
, of the
surrounding medium.
Consequently, measured images
such as the example in Fig. 1
can be fit to Eq. (1)
with
,
and
as adjustable parameters (1).
The computed uncertainties in the fit parameters are found
to accurately assess each such measurement's
precision (1); (7); (4); (5).
This procedure routinely
yields the three-dimensional position and radius of a micrometer-scale
dielectric sphere to within a nanometer and its
refractive index to within one part in a thousand (1).

§ II.1. GPU acceleration
Fitting image data to the results of Lorenz-Mie theory is computationally intensive, and requires initial estimates for the adjustable parameters. Previous implementations were not suitable for high-speed automated analysis because each sphere had to be identified in each image by hand and each fit then required several seconds of computation (1); (8); (9); (10). Fortunately, holographic fitting lends itself to parallel processing on the graphical processing unit (GPU) of a computer graphics card (11). A sphere's scattering pattern typically subtends tens of thousands of pixels and must be computed dozens of times in the course of each fit. Each scattering pattern, furthermore, is expressed as an expansion in special functions, each of which must be separately computed. Whereas conventional CPU-based implementations operate on each pixel in sequence, a GPU-enabled algorithm operates on multiple pixels simultaneously, and so is substantially faster.
We analyze holographic images with software developed in
the IDL programming language (ITT Visual Information Solutions,
Boulder, CO),
taking advantage of the MPFIT suite of Levenberg-Marquardt
nonlinear least-squares fitting routines (12).
We implemented a GPU-enabled computation of
using the GPUlib (13)
(Tech-X Corp., Boulder, CO)
extensions to IDL on an nVidia GTX 280
graphics card (nVidia Corp., Santa Clara, CA)
installed in the host computer.
GPUlib provides access to the underlying CUDA framework
(http://www.nvidia.com/cuda/)
for mathematical computation on GPUs.
With these enhancements,
our implementation
computes a
pixel trial image in 3
,
a factor of 20 faster than the equivalent calculation
performed on the central processing unit (CPU) alone.
Substantial further acceleration could be attained by
performing the fits on the GPU and implementing
the entire software suite in an optimized
compiled programming language.
When supported by a multi-core CPU, the GPU can process
multiple computational threads simultaneously, yielding
a proportional increase in processing speed.
Our implementation uses three independent computational threads
on a quad-core CPU to attain the equivalent of 8 frames/s.
Adding a second graphics card nearly doubles the processing
speed to 15 frames/s.
§ II.2. Unattended feature identification



We automate GPU-accelerated fitting by first identifying particle images in the field of view and then estimating the fitting parameters at low precision through a combination of standard methods. Estimates for each identified particle then are refined to high precision with GPU-accelerated fits to Eq. (1).
Each sphere appears in a snapshot, such as the example in Fig. 2(a), as concentric bright and dark rings. The gradient of the intensity at each pixel therefore defines a line segment in the imaging plane along which a sphere's center may lie. The intersection of such lines defines an estimate for the sphere's centroid in the focal plane. We identify such intersections with a simplified variant of the circular Hough transform (14) in which each pixel in the original image casts “votes” for the pixels in the transformed image that might be centroids. The three line segments superimposed on Fig. 2(a) indicate votes cast by three representative pixels in the original image. Figure 2(b) shows how the image in Fig. 2(a) is transformed by accumulating all possible single-pixel votes. The inset surface plots demonstrate how the extended interference pattern due to a single sphere is transformed into a sharply defined peak, even if two or more spheres' holographic images overlap.
Those pixels in the transformed image with the most votes are taken to indicate the positions of spheres. Initial estimates for their in-plane coordinates then are computed as the brightness-weighted center of brightness for each peak. This procedure typically identifies particles' centroids to within a few tenths of a pixel (7), or a few dozen nanometers. We find in practice that this is sufficiently precise to ensure convergence of the subsequent Lorenz-Mie fit.
Given a sphere's in-plane centroid, we estimate its axial position, radius and refractive index with low-resolution Monte Carlo fits over the anticipated range of parameters. This process can be slow for large, high-index particles whose error function has many local minima. For micrometer-scale latex spheres, on the other hand, it is both fast and robust. Furthermore, in cases where the refractive index and particle size are known to within a few percent, this bootstrapping process can be very fast. For the data presented here, automated preprocessing took up no more than ten percent of the processing time for each fit.
Because each sphere's image extends over a large number of pixels, reliable and accurate results may be obtained even when particles' images overlap or intersect the edge of the field of view. Systematic studies of the limits of single-particle fitting based on sphere concentration, image truncation, and camera noise will be reported elsewhere. The present studies focus on colloidal dispersions whose concentrations are sufficiently low to avoid errors due to overlapping images.
The combination of hardware acceleration and rapid initialization transform quantitative holographic video microscopy into a suitable tool for large-scale automated colloidal tracking and characterization. We next demonstrate its performance on a model colloidal dispersion and then apply it to label-free detection of avidin binding to functionalized latex beads.
§ III. Results

§ III.1. Nanometer-resolution 3D particle-image velocimetry
Holographic particle tracking has immediate applications for
three-dimensional particle-image velocimetry.
Figure 3(a) shows the superimposed
trajectories of 500 individual one-micrometer-diameter polystyrene
spheres (Duke Scientific, catalog number 5100A)
travelling down a 2 cm long microfluidic channel
of 100 width and 17
depth.
The spheres were dispersed in water at a volume fraction of
, and were advected by
a pressure-driven flow of water created by raising a reservoir
against gravity.
Images were obtained in a
area near the
middle of the channel, with the focal plane set roughly 5
below the lower glass-water interface.
Spheres' locations in each snapshot
are linked with a maximum-likelihood algorithm (7)
into single-particle trajectories,
,
sampled at 1/60 intervals.
Not every time step is represented in each
particle's trace because faster-moving
particles near the mid-plane of the flow occasionally obscure
slower-moving particles near the walls.
Figure 3(a) presents only those particle
positions that were identified unambiguously.
Even such incomplete time series can be used to estimate the particles'
instantaneous velocities.
The traces in Fig. 3(a)
are colored according to the trajectory-averaged speed.
These trajectories also are useful for mapping the three-dimensional
flow field.
Each point in Fig. 3(b) represents one particle's speed
as a function of its mean height, , in the microfluidic channel.
The superimposed results of 1000 such trajectories clearly show the
parabolic flow profile expected for Poiseuille flow down a channel,
the width of the cluster of data reflecting spatial variations across the
long horizontal axis of the channel.
The limits of the vertical axis indicate the positions of the
channel's upper and lower walls, with heights being reported relative
to the microscope's focal plane.
The dashed horizontal lines represent the
region of the flow into which particles cannot wander because of their
hard-sphere interaction with the glass walls.
The fit parabola shows the flow vanishing at the channel's boundaries.
§ III.2. Holographically characterizing fast-moving particles



Each trajectory also yields trajectory-averaged measurements of the
radius and refractive index for each particle individually.
Combining multiple measurements on a single particle
minimizes systematic errors due
to inevitable position-dependent variations in the illumination.
The results in Fig. 4(a) show the
radii and refractive indexes of the spheres in a commercial sample
of polystyrene microspheres dispersed in water.
The mean radius of agrees with the
manufacturer's specification obtained by conventional light
scattering, as does the measured 2.5 percent
polydispersity in the radius.
The mean refractive index of
is consistent with
independent measurements on polystyrene spheres (15).
Single-particle characterization is a substantial benefit of holographic characterization compared with bulk light-scattering measurements, which are the usual basis for analyzing particle dispersions. Building up distributions such as the example in Fig. 4(a) from single-particle measurements eliminates the need for population models, and thus affords more general insights into a sample's composition. For example, the anticorrelation between the particles' size and refractive index evident in Fig. 4(a) would not be apparent in light scattering data. No such anticorrelation is apparent in holographic analyses of homogeneous fluid droplets (10). One interpretation of this observation is that the larger spheres in the emulsion polymerized sample are more porous, and consequently have lower refractive indexes.
Simultaneously tracking and characterizing individual particles
enables us to confirm our results' freedom
from motion-based artifacts.
Colloidal particles' images become blurred if they move
during the period that the camera's shutter is open.
This blurring introduces substantial artifacts into
conventional bright-field video microscopy data (4); (5).
As the results in Fig. 4(b) demonstrate, however,
motion blurring has no discernible influence on values for the
radii and refractive indexes obtained by holographic
analysis for speeds as high as
500 .
Additional measurements reveal deviations from the population average
values only for peak flow speeds exceeding 700
.
This robustness
is surprising at first blush because particles travelling at several
hundred micrometers per second traverse several of our camera's
pixels during its 1 shutter period.
The resulting incoherent average of the oscillatory scattering pattern
serves primarily to reduce the contrast in the direction of motion,
however, and so has little influence on the Lorenz-Mie fit.
Even this amount of blurring could be reduced through the use of
a faster shutter or a pulsed laser for illumination.
Being able to characterize individual colloidal particles as they travel down a microfluidic channel provides an effective basis for detecting molecular-scale coatings on functionalized beads. If the individual spheres' radii were known to within a nanometer or so, then the presence of a molecular coating of similar refractive index could be discerned in the apparent increase in the radius. More generally, the characteristics of a treated sample can be compared with control measurements on untreated spheres.
§ III.3. Label-free molecular binding assays

Figure 5 shows one such comparative
study of 2 diameter biotinylated polystyrene spheres
before and after incubation with neutravidin.
The biotinylated polystyrene spheres used in this study
were obtained from Polysciences Inc (Warrington, PA) (catalog
number 24172).
Neutravidin was obtained from Invitrogen (Carlsbad,
CA) (catalog number A2666).
A neutravidin solution at a concentration
of 1
was
prepared by adding 1
of neutravidin to 1
of phosphate buffer
saline (PBS) (50 mM, [NaCl] = 50 mM).
The stock sample of beads was obtained by
adding 10
of
the as-delivered dispersion to 990
of PBS. The coated sample was prepared by adding 10
of the as-delivered dispersion to 990
of neutravidin solution. Particles were incubated and shaken at room
temperature for 1
before they were
introduced into the microfluidic
channels by capillary action.
Flow was induced by introducing a slip of
absorbent paper into one end of the channel
and images recorded until results were obtained
for 1,000 spheres from each sample.
Each data set consisted of roughly 5,000 holographic
measurements, which were obtained over the course of
roughly 5
.
From these measurements, we determined that
the untreated sample has a population-averaged radius
of , consistent with the manufacturer's
specification.
The incubated population
appears to some 6
larger, with an average
radius of
.
Even though the two size
distributions plotted in Fig. 5(a)
overlap substantially, a
Wilcoxon rank-sum test demonstrates that their means differ
with better than 99 percent certainty.
This then constitutes a statistically significant detection
of change in the treated sample's radius, which can
reasonably be ascribed to the presence of a molecular-scale
coating.
The coating's thickness, in this case, is consistent with
the size of a multi-domain avidin derivative.
Pronounced differences between the two samples also are evident in the measured distribution of refractive indexes, plotted in Fig. 5(b). The incubated sample's distribution is significantly sharper, presumably because protein, whose refractive index is similar to that of polystyrene, displaces water in the spheres' porous surfaces, and raises their effective refractive indexes. This would affect the more porous particles on the lower side of the refractive index distribution more than the denser particles on the high side, thereby sharpening the distribution. The arrow in Fig. 5(b) indicates this redistribution.
Similar analyses of random samples of the two data sets further confirm that the particles from the untreated sample all come from the same population, whose size and refractive index is consistent with the manufacturer's specification. The treated samples, by contrast show more variability in size, possibly because the thickness and evenness of the bound avidin layer can vary from sphere to sphere.
These results demonstrate the utility of hardware-accelerated digital video microscopy for detecting molecular-scale coatings on functionalized colloidal spheres. Unlike conventional molecular binding assays, holographic analysis does not require fluorescent or radiological markers, and so eliminates the effort and expense ordinarily required to label molecules bound to beads.
§ IV. Discussion
The proof-of-concept demonstration of holographic flow cytometry presented here can be improved upon in several respects. The substrate beads' size and composition, selected here for convenience, can be optimized for sensitivity. Analysis of calculated scattering patterns suggests that somewhat smaller spheres made of a lower-index material such as silica would offer greater sensitivity to the presence of molecular-scale coatings. This added sensitivity would be useful for detecting smaller molecules, and could be sufficient to seek out nonuniformity in individual spheres' surface coatings.
Comparison with similar GPU-based applications suggests that processing time, which presently stretches to several hours, can be reduced by another order of magnitude on existing computer hardware through rigorous software optimization. In that case, population-based molecular binding assays of the kind we have presented could be completed in several minutes.
Greater sensitivity and speed also could be attained through an optimized choice of laser wavelength. Simultaneous measurements in two or more wavelengths might even enable detection of molecular coatings on individual spheres while also providing spectroscopic information on the coatings' composition.
Even in its present form, the method we have presented here offers precision, simplicity, generality and speed for colloidal tracking and characterization. Consequently, holographic analysis should prove useful in other application areas. For example, high-resolution single-particle characterization is superior to bulk light-scattering for probing the properties of mixed colloidal samples because it does not rely on models for those properties' distributions. Holographic characterization therefore should be a useful adjunct for colloidal synthesis, and is rapid enough to be useful for process control. Nanometer-resolution three-dimensional holographic tracking data already has proved useful for microrheology (9) and research in statistical physics (8). The method's comparative simplicity and use of off-the-shelf components should encourage rapid adoption in areas that previously have been dominated by conventional light microscopy.
This work was supported by the National Science Foundation through Grant Number DMR-0606415 and by the Keck Foundation. B.S. acknowledges support of the Kessler Family Foundation.
References
-
(1)
S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18,275–18,282 (2007).
-
(2)
J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
-
(3)
S.-H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007).
-
(4)
T. Savin and P. S. Doyle, “Role of finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E 71, 041,106 (2005).
-
(5)
T. Savin and P. S. Doyle, “Static and dynamic errors in particle tracking microrheology,” Biophys. J. 88, 623–638 (2005).
-
(6)
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).
-
(7)
J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
-
(8)
Y. Roichman, B. Sun, A. Stolarski, and D. G. Grier, “Influence of non-conservative optical forces on the dynamics of optically trapped colloidal spheres: The fountain of probability,” Phys. Rev. Lett. 101, 128301 (2008).
-
(9)
F. C. Cheong, S. Duarte, S.-H. Lee, and D. G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms,” Rheol. Acta 48, 109–115 (2009).
-
(10)
F. C. Cheong, K. Xiao, and D. G. Grier, “Characterization of individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009).
-
(11)
J. D. Owens, D. Luebke, N. Govinadaraju, M. Harris, J. Kruger, A. E. Lefohn, and T. J. Purcell, “A survey of general-purpose computation on graphics hardware,” Comp. Graph. Forum 26, 80–113 (2007).
-
(12)
C. B. Markwardt, “Non-linear least squares fitting in IDL with MPFIT,” in Astronomical Data Analysis Software and Systems XVIII, D. Bohlender, P. Dowler, and D. Durand, eds. (Astronomical Society of the Pacific, San Francisco, 2009).
-
(13)
P. Messmer, P. J. Mullowney, and B. E. Granger, “GPULib: GPU computing in high-level languages,” Comp. Sci. Engin. 10, 70–73 (2008).
-
(14)
R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM 15, 11–15 (1972).
-
(15)
X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Bio. 48, 4165–4172 (2003).