Resonance Tube - Version Haas 1.1

Equipment DataStudio, complete resonance tube (tube, piston assembly, speaker stand, piston stand, mike with adaptors, channel), voltage sensor, 1.5 m leads (2), (room) thermometer, flat rubber stopper

Reading Sections in your text books on waves, sound, resonance, and normal modes

Warning! When applying voltage to the speaker keep the applied voltage to 2 volts or less. The greater the voltage the louder the speaker becomes. Eleven benches in resonance with an applied voltage of 2 volts will be loud. Eleven benches in resonance with the maximum applied voltage will be deafening!

1 Purpose

This lab will investigate standing sound waves in a tube subject to different boundary conditions. One end of the tube is closed off with a small speaker. The other end of the tube can be closed off with a movable piston which can be used to change the length of the tube. The piston can also be removed leaving one end of the tube open. Sinusoidal sound waves are excited in the tube with the speaker. A small microphone (mike) in the tube detects the sound waves. At the resonant frequencies of the tube the sound waves in the tube will be enhanced.

In another experiment, a pulse of sound will be sent down the tube and the reflected pulse examined. The nature of the reflected pulse will depend on whether the end of the tube is open or closed. It will also be possible to make a rather direct measurement of the speed of sound.

2 Theory

2.1 Air As A Spring

Gas is a springy material. Consider gas inside a cylinder that is closed off with a piston. Initially, assume that the pressure on both sides of the piston is the same. If the piston is pushed in, the entrained gas is compressed, the pressure rises, and there is a net force pushing the piston out. If the piston is pulled out, the entrained gas is rarefied, the pressure drops, and there is a net force pushing the piston back in. Because a gas acts like a spring and has mass it can support oscillations and waves. In this experiment we confine our attention to the mixture of gases we call air, which is roughly 80% N_2 and 20% O_2.

2.2 Traveling Sound Waves in Air

When the cone of a loud speaker moves out, it compresses the air next to it and also imparts an outward velocity to the air molecules. This velocity is in addition to the random thermal velocities of the air molecules. Those air molecules nearest the speaker collide with the adjacent air molecules and impart to those molecules their motion. In this way the compression propagates away from the speaker, and sound is produced. Similar statements apply to the rarefactions produced when the speaker cone moves in. If the speaker cone is vibrated sinusoidally, a propagating sinusoidal sound wave or traveling wave moves out from the speaker. The wave relation, $\lambda f = v$, is satisfied by this wave. Here, λ is the wavelength,
f is the frequency, and v is the wave speed. As the motion of the air molecules is along
the direction in which the wave propagates, the waves are called longitudinal waves. This is
in contrast to the waves on string which are called transverse waves as the elements of the
string move transverse to the direction in which the wave travels.

In traveling sound waves the displacement of the air particles satisfies the wave equation.
It is found that the velocity of the waves v is given by

$$v = \sqrt{\frac{\gamma p}{\rho}}$$

(1)

where p is the air pressure and ρ is the air mass density. The quantity γ is the ratio of the
specific heats at constant pressure and constant volume, C_P/C_V. The quantity γ appears
because the compressions and rarefactions that occur in sound waves are so fast that the
process is adiabatic (there is no heat flow). For air, which is composed mostly of diatomic
molecules, $\gamma = 1.4$.

With the aid of the ideal gas law, Eq.(1) can be written as

$$v = \sqrt{\frac{\gamma RT}{M}},$$

(2)

where R is the molar gas constant, T is the absolute temperature, and M is the molar mass.
For a given gas the speed is only proportional to the square root of the temperature. Some
insight into this fact is given by noting that the root mean square thermal speed (v_{rms}) of
the molecules in a gas is

$$v_{rms} = \sqrt{\frac{3RT}{M}}.$$

(3)

The speed of sound in a gas is quite close to the thermal speed of the molecules in the gas.
The disturbance of the wave is propagated by the molecules colliding with each other, and
the velocity of propagation is essentially the thermal speeds of the molecules.

A convenient expression for the speed of sound v in air at room temperatures is given by

$$v = 331.5 + .606T \text{ m/s},$$

(4)

where T is the temperature in centigrade.

2.3 Traveling Sound Waves in a Tube

Sound waves can travel down a tube of constant cross section very much as they do in free
space. It is assumed here that the walls of the tube are rigid so that they do not flex under
the pressure variations of the wave, and that the walls of the tube are smooth so that there
is not much attenuation of the wave. The speed of the waves in the tube is essentially the
same as in free space.

2.4 Standing Sound Waves in a Finite Tube

Traveling sound waves in a finite tube are reflected at the ends of the tube. If the tube length
and boundary conditions at the two ends of the tube are appropriate, resonance can occur at
certain frequencies which are called resonant frequencies. (These are also the normal modes
of the air entrained in the tube.) Resonance occurs when the reflected waves at the two ends of the tube reinforce each other. A small excitation builds up a large standing wave resonance.

The “pressure” of the air in the wave is understood to be the change in the pressure from the average value. The “displacement” of the air in the wave is understood to be the displacement of the air from its equilibrium position. At resonance, both the pressure and displacement vary sinusoidally in space and time. Points in the tube where the pressure variations are maximum are called pressure antinodes, and points in the tube where the pressure variations are zero are called pressure nodes. Points where the displacement variations are maximum are called displacement antinodes, and points where the displacement variations are zero are called displacement nodes. In standing sound waves pressure nodes occur at displacement antinodes and pressure antinodes occur at displacement nodes.

The open end of finite tube is a pressure node because of the reservoir of normal air pressure outside the tube. (Actually the pressure node occurs a bit outside the end of the tube.) The same point must be a displacement antinode. The end of a closed tube must be a displacement node and a pressure antinode. From these boundary conditions the resonance frequencies of a tube open at both ends, closed at both ends, and open at one end and closed at the other end, can be calculated. A tube with both ends open is called an open tube. A tube with one end open and one end closed is called a closed tube. Fig. 1 shows the air displacement for the first 4 resonances of an open tube and a closed tube. The resonance wavelengths are determined by fitting standing waves into the tube so that the boundary conditions at both ends are satisfied. The lowest resonant frequency is called the fundamental or 1st harmonic. The n^{th} harmonic is n times the fundamental. Not all harmonics need be present.

3 Apparatus

The resonance tube is shown assembled in Fig. 2, and the parts are shown in Fig. 3. The tube has a built in metric scale. The speaker-microphone stand is affixed at one end of the tube and secured by shock cord. This stand has a vertical plate that holds the speaker. A hole in the plate accommodates the small microphone (mike). A thumbscrew holds the microphone in place. PLEASE TIGHTEN THIS THUMBSCREW ONLY SLIGHTLY. Always make sure that the plate holding the speaker and mike presses firmly against the tube.

The lead from the mike goes to a small battery powered preamplifier which has an off-on switch. At the start of the experiment, turn the switch on (red showing next to switch). To conserve the battery, turn the switch off when you are through. The output of the preamplifier goes to a phone plug. There are adaptors that receive the banana plugs of a voltage sensor.

The speaker is driven by the power amplifier sitting on top of the interface. Check that the output of the power amplifier is connected to the speaker by two leads. DO NOT OVERDRIVE THE SPEAKER. Limit voltages to the speaker to 2 V. You should hear sound, but it should not be very loud. Connect a voltage sensor to channel A of the interface and to the output of the preamplifier.

Program the interface as follows.

- Plug in the power amplifier analog plug into channel C and then click on channel C and choose power amplifier. The auto button is automatically depressed.
• Plug the voltage sensor in one of the analog plugs.

• In the experiment window click on the channel that the voltage sensor is plugged in and select voltage sensor.

• On the voltage sensor menu option. Change the sensitivity from the default of "low" to "medium". (DataStudio has an analog to digital converter (ADC) of $2^{12} = 4096$. At a sensitivity of low, voltages from -10 to $+10$ volts are digitized by dividing this voltage interval up into 4096 steps. Each step is about 5 mV. At medium sensitivity the voltage interval is -1 to $+1$, and each step is about 0.5 mV. At high sensitivity, the voltage interval is -0.1 to $+0.1$ and each step is 0.05 mV.)

• Drag the scope icon from the display window to the output voltage terminals, or to output voltage in the Data window. The signal generator voltage is now applied to the top channel (red) of the scope. This is also the channel that the scope triggers on. (It is preferable to trigger on the larger voltage driving the speaker than on the much smaller preamplifier voltage.)

• Click and drag the voltage Ch A icon from the data window to the center of the scope window. You should see the voltage inputs appear on the right side of the scope window. The scope window should look similar to figure 6.

4 Using the DataStudio Scope

The DataStudio oscilloscope can be used to observe the waveform of the sound waves. The x axis of the scope is time. The y axis is the voltage input. Practice using the following components of the DataStudio scope. See figure 6 for the scope diagram.

A. These two buttons change the y-axis scale, either stretching the scope trace or shrinking the trace in the vertical direction.

B. Moves the scope trace up or down on the screen.

C. Changes the x-axis scale, either stretching or compressing the trace in the horizontal direction.

D. This button selects the smart tool function. The smart tool function will allow you to determine the coordinates of any point on the scope. The time is displayed at the bottom of the screen. The y-axis value is displayed next to button A.

E and F. The trigger is used to make the scope trace appear static on the screen. If you notice that the trace is “moving” across the screen, turn on the trigger button. Move the green triangle F up or down to freeze the trace. The green triangle changes the trigger level, the value at which the sweep will start on the signal.

5 Experiment: Measuring Wavelength

Using a 500 Hz sine wave with an amplitude of 1.0 V, determine the positions of the piston that result in maximum signal from the mike. What is the uncertainty for each position measurement and how did you determine them? Are these positions of maximum amplitude
on pressure nodes or anti-nodes? displacement nodes or anti-nodes? Draw a diagram showing where the nodes are in the tube for this frequency and where your positions were measured. Determine the wavelength λ from your data, averaging or fitting appropriately your various measurements. Compute the speed of sound (and uncertainty!) from your measurements of λ and f, and compare to theory.

Repeat the above measurements for frequencies of 1000 Hz and 1500 Hz, and make the same analysis. These are shorter wavelengths and more resonances will be observable. Do the wavelengths change with frequency in the way you expect? Is the speed of sound consistent for all the frequencies you measure?

6 Pulsed Experiments

In these experiments, short pulses will be sent down the tube from the speaker. This is achieved by driving the speaker with a relatively low frequency square wave of 10 Hz. The speaker cone move very quickly one way and then stops. This sends a short compression or rarefaction pulse down the tube. This pulse is reflected from the end of the tube and propagates back toward the speaker. It bounces off the speaker end of the tube, and continues to go up and down the tube until it is damped. The period of the square wave is chosen long enough so that the pulse is completely dissipated before the speaker cone moves the other way in response to the square wave and sends the next pulse down the tube. The pulses alternate between compressions and rarefaction.

6.1 Reflected Pulse and Speed of Sound

Set the signal generator for a 10 Hz symmetric square wave with an amplitude of 2 V. Loosen the thumbscrew holding the mike, back off the speaker stand, and slide the mike into the tube to the 10 cm mark on the tube scale. Why are we suggesting to do this? Push the speaker stand back against the tube. Move the piston out to 80 cm, supporting the end of the piston rod. Adjust the scope so that the pattern looks something like Fig. 4. Please explain the scope trace.

Now zoom in so that the trace looks like Fig. 5. Make sure you keep the sample rate at a rate no greater then 5000Hz or the software will crash. Is the reflected pulse inverted? Why or why not? Using the scope pattern, measure the time it takes the pulse to travel down the tube, be reflected, and travel back to the mike. You will need to choose a point in the pulse which can be identified with minimum uncertainty. How did you choose this point and what is the uncertainty in your measurement and how did you determine the uncertainty?

Determine the speed of sound in the tube, and compare to theory and your measurements from the last section using wavelengths. Which method of measuring speed is more accurate? You might want to measure the room (or tube air) temperature. Why? How much would the temperature of the air have to change for you to be able to tell from your measurements that the speed of sound is different?

With the scope running, slowly move the piston toward the speaker. What do you see on the scope? Explain. Try measuring the speed of sound again, using a smaller distance between the mike and piston. Do you get a more or less precise measurement? Why?
6.2 Boundary Conditions

When a wave or a pulse hits the boundary between two mediums, it is partially reflected and partially transmitted. An example would be light impinging on glass. The nature of the reflected pulse depends on the boundary conditions.

If the end of the tube where the pulse is reflected is open, the pressure in the reflected pulse must be inverted so as to cancel the pressure of the incoming pulse. Why? Is the end of the open tube a pressure node or anti-node? What if the tube is closed with the piston? Remove the piston and piston stand from the tube and support the end of the tube with the channel. Observe the nature of the reflected pulse.

Now close the end of the tube with the rubber stopper provided and note the change in the nature of the reflected pulse. Discuss what you see and try to explain the phenomena. Is the speed of sound you measure in each case the same? Why or why not? Can you determine where along the tube (or outside the tube!) the wave is reflected? What is your measurement of this position (and uncertainty)?

With the stopper in place on the end of the tube, try “cracking” open the end of the tube a bit by bending the stopper. How much of a crack is necessary to change the reflected pulse? Can you explain what is happening?

7 Questions

1. Let the length of the tubes in Fig. 1 be L. What are the wavelengths at the fundamental frequencies of the two types of tubes? (Note that both types have at least one open end!)

2. What is the wavelength at the fundamental frequency of a tube of length L closed at both ends?

3. Show that Eq.(2) follows from Eq.(1).

8 Finishing Up

Please leave the bench as you found it. TURN OFF THE MIKE PRE-AMPLIFIER SO AS TO CONSERVE THE BATTERY. Thank you.
DISPLACEMENT AT RESONANCE

OPEN TUBE

FUNDAMENTAL = 1st HARMONIC

2nd HARMONIC

3rd HARMONIC

4th HARMONIC

CLOSED TUBE

FUNDAMENTAL = 1st HARMONIC

3rd HARMONIC

5th HARMONIC

7th HARMONIC

Resonance States: Open and Closed Tubes

Fig. 1

Fig. 2
Fig. 3

SQUARE WAVE DRIVING SPEAKER

INCIDENT AND REFLECTED PULSES DETECTED BY MIKE

Fig. 4

SQUARE WAVE DRIVING SPEAKER - MUCH LESS THAN ONE CYCLE

INCIDENT PULSE

FIRST REFLECTED PULSE

Fig. 5 (Fig. 4 with greatly expanded time scale)
Figure 6