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Magnetic Torque and Magnetic Force

Equipment- magnetic torque apparatus, calipers, scale

1 Introduction

In modern physics, the particles that make up matter, such as the electron, proton, and
neutron, often have magnetic moments and angular momentum (spin). These vectors are
parallel or anti-parallel. How these particles behave in uniform and inhomogeneous magnetic
fields is of great interest. In a uniform magnetic field there is no net force on the particle, but
there is a torque and the angular momentum will, in some sense, precess about the magnetic
field. Quantum mechanics tells us that the projection of the angular momentum along the
magnetic field can only be certain discrete values. By supplying a magnetic field of the right
frequency it is possible to make the particle change its angular momentum projection, or
“flip” the spin. In an inhomogeneous magnetic field, a particle with a magnetic moment
experiences a net force. This enables a beam of particles to be deflected, such as in the
Stern-Gerlach experiment.

This experiment does not deal with particles but with two macroscopic magnets. One
magnet is just a bare magnet attached to a spring. When a uniform or inhomogeneous
magnetic field is applied, the force on the magnet can be determined by measuring the
deflection of the spring. The second magnet is buried at the center of a cue ball. The cue
ball has a small handle, and for some of the experiments the handle is used to give the ball
some rotation, and therefore angular momentum.

Many features of your experiments with these macrosCopic magnets will be similar to
features of experiments with elementary particles. Some features will be different. The
quantization of the angular projection along the magnetic field will not be observable, but
does play a major role in particle experiments.

2 Apparatus Overview

This section will give you an idea of what the apparatus looks like. Fig. 0 shows the apparatus
with the cue ball. The cue ball sits in a spherical well that has a hole in the bottom through
which air is pumped. The cue ball sits on a cushion of air that has very little friction. The
black handle on the cue ball is clearly visible. The cue ball sits at the center of two coils that
are connected in series. A power supply provides current to the coils, and the current can be
read by a meter on the power supply. Depending on the coil connections, the field supplied
by the coils can be very uniform or very non-uniform. A switch on the power supply makes
the choice. There is a stroboscope mounted on the top coil that can be directed at a white
spot on the handle of the cue ball. The stroboscope can be used to measure the rotation
frequency of the cue ball. It is also possible to insert a rod that has a sliding weight into the
cue ball . See Fig. 1. In this way a gravitational torque can be applied to the cue ball. If
the cue ball is removed, a plastic tower can be inserted into the apparatus. See Fig. 5. This
allows a magnet on a gimbal to be suspended from a spring in the magnetic field.
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| Figure 1 - Static Torque
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The Instrument

This section of the manual provides a description of the various component parts.

A. The Magnet
What we refer to as “the magnet” is the component of the instrument that houses the two

co-axial coils, the air bearing, and the strobe light.

1. -- Coils _
The coils are composed of #18 copper wire that is wound on phenolic bobbins.

Each coil has 195 turns. The two coils are always connected in series so that the same
current flows through each turn. This current is displayed on the analog ammeter. It is
important to note that the coils have some resistance, and that resistance is temperature-
dependent. If significant current (~3-4 amps), is allowed to flow through the coils for a
long time, the coils’ temperature begins to rise. You can feel the increase in temperature.
As the copper heats up, its resistance increases, and the current subsequently decreases,
since the power supply is not current-regulated. It is therefore a good idea to have the
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students turn the current down to zero when the magnet is not being used. Try to avoid
using high currents for any appreciable length of time. The instrument is designed to
sustain the full output power of the supply without any danger. However, since the
maximum current will be decreased as the temperature of the coils increases, students may
not be able to obtain the highest fields if they allow the coils to get too hot.

In order to calculate the magnetic field at the center of the apparatus, one needs to
perform an integral, since each of the turns has a different radius and a different distance
from the center of the pair. Such a calculation may be a bit tedious for students, so we
have calculated an equivalent radius and equivalent distance between the two coils, such
that each coil can be represented by a single turn whose radius and separation are:

equivalent radius ( r ) = 0.109 m

equivalent separation between the coils (d) =0.138 m

For those dimensions, and using the Biot-Savart Law, if one ampere of current flows
through the pair of coils, then the magnetic field at the center of the two coils is:

B= 1.36%.03x 10~ Tesla (one Ampere)
So,

B=136 £.03x 107 Tesla/Ampere

Using the equivalent radius and separation along with the Biot-Savart Law, the students
should be able to calculate for themselves this magnetic field at the center, which is where
the magnetic dipole will reside. I is only the magnetic field at the center of the
instrument that is imporiant in all of these experiments.

The value for the magnetic field gradient at the center of the apparatus will be
needed for one of the experiments. The field gradient can be calculated by differentiating
the expression of the magnetic field with respect to z, if the center axis of the coils is the
z-axis. The expression for the on-axis magnetic field gradient due to one current loop is:

% =- 3 udr’ 2 (Field Gradient/loop of wire)

2 (r2 +zl')5/2

dB
Using the equivalent radius, and separation, the value of e at the center of M11-A for a

single turn is:

dB .
e 4.33 x107°1 Tesla/meter (per loop of wire)
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For both coils the z-axis field gradient of the entire magnet is:

— =169 x 10"°] Tesla/Meter (for magnet)

2. -- Air bearing

The air bearing is a spherical hollow in the cylindrical brass rod that is supported
on the bottom coil form. The bearing has a narrow opening that allows air to be pumped
into the spherical hollow. The ball sits in this hollow and floats on a cushion of air
providing support with only a small amount of friction. The air pump is housed inside of
the power supply. A vinyl hose connects the air supply to the under-side of the air
bearing. Make sure the students are careful not to restrict air flow by accidentally
“kinking” the hose.

3. -- Strobe light

The strobe light is housed in its own insulating housing on top of the upper coil.
The student can vary the frequency of the strobe flashes by a control located on the power
supply. The frequency of these flashes is automatically measured and read out to two
significant figures on the power supply’s front panel. This data is updated every 10
seconds.

B. The Accessories

The accessories are those components of the Magnetic Torque instrument that are not
permanently attached to the two main parts of the instrument. They’re the “toys” that the student
has to manipulate in order to perform the various experiments. Let’s examine them.

1. -- Cue balls
These cue balls are simply aramith snooker balls with a small cylindrical permanent

magnet at their centers. The magnet acts as if it were a magnetic dipole whose magnetic
dipole moment points in the direction of the ball’s handle. A handle embedded in the ball
allows the student to spin the ball, measure its rotation frequency, and determine the
direction of the magnetic moment.

The handles on the balls have a small axial hole drilled in them. A thin alummum
rod with an attached weight is placed in this hole as part of a static magnetic torque
experiment. The rod has a steel-tipped end that holds fast to the magnetic inside of the
ball. The movable weight is a small clear plastic cylinder with an O-ring inside that keeps
the weight from involuntarily slipping on the rod. The weight is meant to be moved up
and down the rod to vary the gravitational torque (Figure 1).
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2. -- Plastic tower

The clear plastic tube attached to a cylindrical base can be placed on top of the air
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bearing. This apparatus is used for the
magnetic force experiments. A nylon
cap placed on the top of the tube holds
the rod that supports the spring. The
other end of the spring is connected to
the magnet. The position of the
suspended magnet inside of the tube
can be adjusted by moving the rod
inside the cap. There is also a small
screw-eye attached above the magnetic
dipole that can be used to prevent the
magnet from rotating on its gimbals
(Figure 2).

Ball bearings that weigh one
gram each are provided for calibration
of the spring.

3. -- Rotating magnetic field

This is an optional accessory,
which may not be included. The
rotating magnetic field is simply a
special configuration of permanent
magnets and soft iron shims that
provide a horizontal magnetic field.
This uniform horizontal magnetic field
(~1.0 mT) can be manually rotated
around the air bearing. ‘It has a hole in
its base that allows the air bearing to
act as its rotation axis (Figure 3). This
magnetic field is used to demonstrate
nuclear magnetic resonance. (The
lowest frequency NMR ever!)

4. -- Bulls-eye level

If the air bearing is not level, an
additional torque due to unequal air
flow can result. Such a torque can

produce erroneous data. The bulls-eye level is simply a fluid-filled region that has a bubble
in it. When the bubble is within the circle, the apparatus is reasonably level. The leveling
can easily be accomplished by placing shims underneath the rubber feet below the magnet.
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C. Power Supply
ON the front panel, going from left to right:

1. -- Analog ammeter display
Reads the current passing through the coils (since the coils are connected in

series). The knob below the display is used to adjust the current. Turning the knob
clockwise increases the current through the coils.

2. -- Field direction switch
Controls whether the magnetic field at the center is directed up or down.

3. -- Field gradient switch
Controls whether there is a magnetic field gradient at the center of the instrument

(on), or a uniform magnetic field (gradient off).

4. -- Strobe light frequency display
Displays the frequency of the strobe light in Hertz. Below the display is the

frequency-adjust. Turning the knob clockwise will increase the frequency. Afier adjusting
the frequency, one needs to wait for the instrument to count up to the actual frequency.
Next to the frequency-adjust knob is the on-off switch for the strobe light.

5. — Air switch



Allows the student to turn off the air pump when they are performing the magnetic
Jforce experiments.

6. -- Pilot light
Indicates when the ac power is on for the entire system.

On the back of the power supply are the following:

1. -- on-off ac switch for all of the components inside.

2. -- cord that plugs into the ac electrical socket.

3. -- Cinch Jones connector that connects the power supply to the magnet.

4. — male air hose connection (the air hose has a female connection that mates to it).



EXPERIMENT 1: Magnetic torque equals gravitational torque

Objectives
The main objective of this experiment is to measure the magnetic moment (n) of

the magnetic dipole (which is the magnet inside the cue balls). You will also verify the
functional relationship: uxB = rxmg.

Equipment
Magnet, power supply, air bearing, cue ball, aluminum rod with a steel end,

weight, ruler, balance, and calipers.

Theory
From your electricity and magnetism course, you should be aware that a loop of

continuous current is referred to as a magnetic dipole. The neodynium iron boron
magnetized disk inside the ball is not a loop of current. In fact it is a .375 inch diameter,
.25 inch thick disk magnetized along the axis of the disk. But its magnetic field is such that
it acts as if it were a magnetic dipole. In a uniform magnetic field (which is the case at the
center of the two-coil configuration), a magnetic dipole experiences a magnetic torque

that is given by the expression: '

7=nuxB

Your magnet’s dipole moment is aligned parallel to the handle on the ball; the magnetic
field produced by the coils can be either up or down along the coils’ axis. If the magnetic
field points up, and the magnetic moment is aligned at some angle 6 away from the
direction of the magnetic field, the ball will experience a torque that will tend to rotate it
so that the handle of the ball points upward. But if the aluminum rod is placed in the
handle of the ball, there is now another torque due to the earth’s gravitational field. The
expression for this torque is: |

T =rxmg



The gravitational torque tends to cause the ball to rotate so that the ball’s handle points
downward (Figure 4). Since a net torque causes a change in angular momentum, the ball
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-will rotate if the gravitational torque is larger than the magnetic torque, or vice versa. But
when the magnetic torque is equal to the gravitational torque, the ball will not rotate, since
the net torque on the ball is zero. This configuration is mathematically represented by:

uBsin@ = rmgsiné
Or:

uB =rmg r='”—’§B

So if we measure r for various magnetic fields, the functional dependence of 7 to B should
be a straight line with the slope being an expression that contains 4. But what’s r, m, and
‘B 7 B is the magnetic field at the center of the coils, and can be calculated from the
known current. But there are two m’s and two r’s that we need to consider. The first m
is the mass of the weight, with its corresponding r being the distance from the center of
the ball to the center of mass of the weight. The second m is the mass of the rod, with its
corresponding 7 being the distance from the center of the ball to the center-of-mass of the
rod. But remember that we’re trying to measure p using the slope of a line. It turns out
that the mass of the rod and its center-of-mass distance, r, are combined in a constant in
the graph of r vs. B, and do not affect the slope of the line. So the only r that one needs
to measure is the 7 of the weight, and the only m that must be measured is the mass of the



weight. This is the advantage of a slope measurement of u rather than a single point
determination where the mass and center-of-mass of the rod would be essential.

So p is the unknown in this experiment. The independent variable is the B-field at

the center of the instrument, and the dependent variable is r, the displacement of the
center of mass of the weight from the center of the ball.

Procedure

Report

a. First measure all of the constants that are involved in the experiment. Use a
balance to determine the mass of the weight, calipers to measure the diameter of
the ball, and a ruler to measure the length of the ball’s handle. From these
measurements, 7 of the weight can be determined. Make sure that you remember
10 keep all of your measurements in SI units, specifically keeping the magnetic
Jield in Teslas, the length measurements in meters, and the mass measurements in
kilograms.

'b. Next measure r of the weight for various magnetic fields. Turn on the power
supply and the air. Keep both the field gradient and the strobe light off. Set the
direction of the magnetic field on “up” so that the handle of the ball points upward
when the ball rests on the air bearing. For small currents the gravitational torque is
greater than the magnetic torque, so the current to start at is about 2.5 amps. With
that current, adjust the position of the weight until the ball and the tip remain
stationary at about 90 degrees with respect to the vertical. You might have to
steady the rod, weight, and ball with your hand, because the system tends to
oscillate and drift due in part to the earth’s magnetic field. When the gravitational
torque equals the magnetic torque (remember to continuously check the current to
make sure that it remains at the set value), take the ball off of the air bearing and
turn the current down to zero. Measure the length from the end of the handle to
the center of mass of the weight. Add this value to the length from the center of
the ball to the end of the handle, and the resulting value is the 7 of the weight.
Repeat these steps for at least six different currents up to 4 amps. The
magnetic field can be calculated from the currents. A data table with column
headings such as the ones below is a good way to organize the measurements:

I (amps) B (teslas) r (meters)
1. Compose a data table.
2. Include a sample calculation of your determination of the magnetic field from

the measured current.

3. Graphrvs. B.

Calculate the magnitude of your magnetic moment, 4.

5. Extrapolate your graph in order to determine its y-intercept. From this value,
determine the location of the rod’s center of mass. Compare this calculated
value with a measured location of the rod’s center of mass.

»



EXPERIMENT 2: Harmonic oscillation of a spherical pendulum

Objectives
The primary objectives of this experiment are 1o determine the dipole moment of

the magnet inside of the ball, and to study the behavior of a physical pendulum’s small
amplitude oscillation.

Equipment :
Magnet, power supply, air bearing, cue ball, stopwatch, calipers, and balance.

Theory
This experiment involves dynamics principles. From classical mechanics, you are

familiar that a net torque on an object causes a change in that object’s angular momentum,
given by the expression:

For our particular system, if the cue ball is placed in the air bearing with a uniform
magnetic field present, and if the “intrinsic” dipole moment of the ball is displaced some
angle away from the direction of the magnetic field, the ball will experience a net torque
and will change its angular momentum. However, it’s important to note the direction of
the magnetic moment relative to the magnetic field. 1f the magnetic moment in the ball is
displaced an angle 6 from the axis of the coils (the direction of the field), it experiences a
restoring torque that acts against the angular displacement of p. Thus, the differential
equation that describes the motion of the ball having moment of inertia / is:

xB-]iz—e-
BXB=l

Where 6 is the angular displacement from the direction of B. The minus sign indicates
that the torque is restoring in nature. In scalar form we have:

d*e
d,Z

—uBsinf=1

But for small angle displacements, sinf= 6, so

d’e
ar’

— uBO=1
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We’ll guess the solution of this equation to be 8(t) = Acoswt, where @ and A are
constants. Substituting into the differential equation we have:

— uBAcoswt = —I4w? coswt

For this equation to be true for all times ¢,

r=22
)
Thus, the final expression is:
e an’l
uB

Remember that this expression is only applicable for a small angle displacement. I can
be well approximated as the moment of inertia of a uniform solid sphere, namely:

I==mr?

where m is the mass of the ball and r is the ball’s radius. B is again the independent
. 1
variable, and 7 can be measured using a stopwatch. A graph of T2 vs. B should yield a

straight line whose slope includes the magnetic moment.

Procedure
a. First, determine the moment of inertia of the cue ball using its mass and its
radius. The mass can be determined using a balance, and the radius can be
determined using the calipers. -

b. For this experiment, the field gradient should be off; the strobe light, off; the air
on; and the field “up”. Because the magnetic torque is the only torque involved in
this experiment, the experiment can be performed at Jow currents (small B). Place
the cue ball on the air bearing and set the current at or near one amp. Give the
handle of the ball a small angular displacement from the vertical. Release the ball
from rest, and it will oscillate. With a stopwatch, measure the amount of time it
takes the ball to complete twenty full cycles of motion. Make sure you include
the counting of the first full cycle. This measured time divided by twenty will be
the period of oscillation for the ball at that particular applied magnetic field.
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Repeat this for currents up 1o 4 amps. Because of the 1/B independent variable
that will be graphed, it’s a good idea to obtain data for quite a few different lower
currents in order to obtain an even distribution of data points on the graph of
T*vs. 1/B. Plot your data in a table with column headings such as the ones
below: '

1(A) B(T) 1(20) (s) T=1/20(s) "T2(s?) 1/B (T

Report
1. Compose a data table. Show sample calculations.

2. Graph the functional relationship of 72 vs. 1/B.
3. Calculate the magnitude of your magnetic moment from the slope of this

graph.

EXPERIMENT 3: Precessional motion of a spinning sphere

Objectives
The main objective is to measure the dipole moment of a permanent magnet inside

the cue ball. A secondary objective is 1o observe and quantify the motion of a spinning
sphere subject to an external torque.

Equipment
Magnet, power supply, air bearing, cue ball, strobe light, stopwatch, calipers, and

balance.

Theory :
When the magnetic moment is displaced some angle from the direction of the

magnetic field, the magnetic dipole (and subsequently the ball) experiences a torque that
causes a change in the ball’s angular momentum in the direction of the torque. This is the
central principle of this expeiment. The ball is displaced from the vertical position and
spun, with its spin-axis the axis that runs through the handle of the ball. This creates a
‘large spin angular momentum. The spin axis will remain in a fixed position until the
uniform magnetic field is tumed on. When the magnetic field is turned on, the magnetic
dipole will experience a torque. This torque will cause a change of angular momentum in
the direction of the torque, but because the ball already has a large spin angular
momentum, it will precess. This motion is similar to that of the spinning gyroscope in the
earth’s gravitational field. You may be familiar with gyroscopic motion from your
mechanics coursé. '
The differential equation for the motion of the ball is:

uxp=L
H> 2=

A side view of the angular momentum vectors is shown below:
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If we look from above the spinning ball at the change of the angular momentum for a short
time At, the picture looks like the one below:

L,Sinalz
‘ A6 \ AL,

L,sin&'.
Since s = r@, we can show that:
AL, = A8 L,sind’

AL A6 .
A’—NLsma

as At—0,

-dL
== Q,Lsing’

where Q, is the precessional angular velocity. Since p is in the same direction as L,

dL
e pBsiné’
So yBsin@' = Q,Lsin8’
and pB=Q,L
H
or Q = -ZB

The precessional frequency (in radians/second) is the dependent variable. It can be
determined by measuring the time needed for the handle of the ball to precess through 27
radians, and then dividing that time by 2z. The magnetic field is the independent variable.



The magnitude of the angular momentum L is a constant that can be measured
using the strobe light. The handle of the ball has a white dot on its top. As the ball spins
the strobe light reflects off of this white dot. When the strobe light is flashing at the same
frequency at which the white dot is spinning, the dot will appear stationary. Thus, from
the displayed strobe frequency and the measurement of the moment of inertia, the spin
angular momentum of the ball at that time can be calculated. The graph of €, vs. B will
yield a straight line if L is held constant throughout the experiment. From the slope of this
line, y can be determined.

Procedure

a. First measure the constants. The moment of inertia of the ball is assumed to be
that of a solid sphere. The mass of the ball needs to be measured with the balance;
its radius, with the calipers. The other constant is the spin angular momentum of
the ball. A constant value of the spin angular momentum of the ball can be
accomplished by fixing the frequency of the strobe light. We recommend choosing
a frequency somewhere between 4.5 and 6 Hertz. Set the strobe light at a
frequency in that range and check it throughout the experiment to make sure that it
remains constant. In order for the strobe light to illuminate the white dot, the
room should be darkened. It is not necessary to make the room completely dark in
order 10 use the strobe light effectively. You can maintain ample light for writing
and working with the instrument.

b. Once the strobe light has been set to some particular frequency, record that
number. Turn the air on, leave the field gradient off, and set the field direction
“up”. Have a stopwatch ready, but don’t turn on the current quite yet. Before
you begin making measurements, practice spinning the ball. A good technique is
to spin the ball (give it a good, hard spin!) and then use the tip of your fingernail to
direct it to spin about the handle’s axis with the handle in the strobe light. Notice
that the frequency of the ball’s spin does change with time. If you graph this
change, it closely approximates an exponential decay. It’s because of this decay
that the range of frequency between 4.5 and 6 hertz is advised. In this range, the
rotational frequency does not change significantly during the time it takes the ball
to precess through one period.

When you master the spin technique, begin the measurements. Leave the
current off, spin the ball up, adjust it so that it’s bathed in the strobe light, and then
watch the white dot. You’ll see it all around the handle at first, but as the ball
slows down, the white dot will begin to have a regular rotation of its own. This
rotation will slow down until the white dot stops. As soon as it stops, turn the
current up to 1 amp, and time a period of the ball’s precession. Record this time
for that current, turn the current off, and spin the ball up again. Do the same
procedure, but this time use 1.5 amps, and continue on in 0.5 amp intervals until
you reach 4 amps. This should give you enough data. Record your data in a table
with columns such as the ones below:

1(A) B Ty (s) Q= 2T (57

'y



Report
1. Compose a data table. Show sample calculations.

2. Graph the relationship Q vs. B.
3. Calculate the magnitude of the your magnetic moment from the slope of this

graph.

EXPERIMENT 4: Net force in a magnetic field gradient

Objectives
There are three main objectives to this experiment. The first is to demonstrate that

in a uniform magnetic field, there is no net force on a magnetic dipole, only a net torque.
Secondly, this experiment demonstrates that there is a net force on a magnetic dipole
when it is in the presence of a magnetic field gradient. The third objective is to measure
the dipole moment, using the fact that the net force on a magnetic dipole in a magnetic
field gradient is proportional to the magnetic moment.

Equipment _ :
Magnet, power supply, plastic tower apparatus, calibrated spring that is supported

inside the plastic tower, permanent magnet disk mounted in a gimbal, ball bearings that
serve as weights, ruler, and balance.

. Theory
The principal player in this experiment is the magnetic dipole. 1f we model the

magnetized disk inside the cue ball as a current loop, and place it in a uniform magnetic
field that is directed along the axis of the loop, the force on any infinitesimal section d of
the loop is given by: .

dF =idl x B

where i is the loop current.  The same amount of curremt passes through each
infinitesimal section of the current loop. Using the right-hand rule one can see that every
dF adds to another dF of equal magnitude that points in the opposite direction.
Therefore, there is no net force on a current loop in a uniform magnetic field, If this
model represents our magnetized disk then there should be no net force on the disk in a
uniform magnetic field. '

However, if the disk is placed in a non-uniform magnetic field, that is, a spatial
magnetic field gradient, then there is a net force onit. To show this, let’s assume that the
direction of the magnetic field is a direction parallel to the z-axis. This magnetic field
changes only in the z-direction, where it changes its magnitude with increasing z. But
Maxwell’s second equation,

£Bonda=0
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says that the flux of the magnetic field through a closed surface S must equal zero. If a
closed surface was constructed around the field along the z-axis, there would be a net flux
of the magnetic field through the surface, which would violate Maxwell’s second equation.
We can thus conclude that if there is a magnetic field that is changing in space, i1 must
change in more than one direction. It follows that in our particular situation, the field
lines are no longer parallel to the axis of the magnetic dipole, but are bowed, and curve
away from the z-axis. Using the expression for the force on an infinitesimal section of the
current loop, it can be shown that there must be a net translational force on the magnetic
dipole” . 1t turns out that the expression for the magnitude of this force is:

dBl
Fo=pn—

We can measure this force. Using the plastic tower apparatus and applying a field
gradient, the suspended magnet experiences a translational magnetic force. For our
apparatus, this force is nearly constant over a fairly wide range of z-values, since the
magnetic field gradient is reasonably constant. However, there is another force on the
suspended magnet, the force that the spnng applies. The force due to the spnng is given
by Hooke’s Law,

F=k

where k is the spring constant, and z is the displacement of the magnet from its equilibrium
position (the position where the magnet resides in the absence of a magnetic field
gradient). The fact that there are two forces acting on the magnet means that the magnet
will displace either upward or downward until the spring force equals the magnetic force.
At that point the magnet will cease its acceleration, and if one stops its motion, it will
come to rest. At this displacement z, the following expression can be written:

F, spring = Ftea gradient
or

de
kz=p—2r

The magnetic field gradient can be calculated. First calculate the on-axis magnetic field
produced by two coils with currents in the opposite directions. Then differentiate that
expression with respect to z, with the axis of the coils being the z-axis. The spring
constant k can be measured using the ball bearings as weights to calibrate the spring. The

displacement z is then the dependent variable, and A is the independent variable,

* See “Electricity and Magnetism”, Edward M. Purcell, McGraw-Hill, page 411, 1SBN 0-07-0049084 .
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. dB
proportional to the current. The graph of z vs. 5 oan be plotted, and from the slope of

the expected line, the magnetic moment can be determined.

Procedure

a. For this experiment, you’ll need both the power supply and the magnet coils,
but the air bearing is not needed, so the air should be turned off. Place the clear
plastic tower on top of the air bearing. Take the cap for the tower, and insert the
rod with the spring and suspended magnet into the hole in the cap. There is a
screw in the cap that can be used to hold the rod in place. Place the cap on the top
of the tower. Now adjust the length of the rod so that the suspended magnet is in
the center of the coils, that is, where the center of the ball was when it rested on
the air bearing. For the first part of the experiment, loosen the screw on the
suspended magnet so the magnet is free to rotate about a horizontal axis. Set the
field gradient off, and turn up a current. Now keep your eye on the magnet, and
change the field direction. Observe what happens and write it down.

b. For the next portion of the experiment, the same equipment will be used, except
that now the suspended magnet should be screwed down to prevent it from
rotating. Tighten the screw eye so that it is in a position where the flat sides of the
magnet are facing up and down.

Determine the spring constant k. To do this the magnetic field must be
turned off. Hang the magnet down as far as possible, so that only a small portion
of the rod is showing above its support. Mark the position of the magnet on the
side of the plastic tower with some masking tape. Measure the length of the rod
above the plastic holder. Next, take the cap-rod-spring device out of the tower,
and add one ball bearing to the magnet. Then place the cap-rod-spring device onto
the tower and adjust the rod so that the magnet is again at the tape mark. Measure
the length of the rod above the holder. Subtract from this length the length of the
rod when the magnet was in equilibrium, and the resulting length will be the
displacement of the magnet from equilibrium due to one ball/weight. (The balls
have a mass very close to one gram. You can check that with a balance.) Repeat
this for two, three, and four ball/weights hanging from the suspended magnet.
Then graph the force on the magnet (mg) vs. displacement. The slope of that line
will be £.

¢. Now that the spring constant has been determined, you can proceed with the
field gradient experiment. First, use the set screw to lock the dipole in place to
prevent it from rotating. With all of the weights off of the magnetic dipole, adjust
the position of the rod so that the magnetic dipole is at the center of the coils.
Again, place a piece of masking tape on the side of the plastic tube so that you will
know the location of this center. Measure the length of the rod when the magnet
is at this center position. With the field gradient switch in the “on” position,
slowly turn the current knob to 0.5 amps. The dipole will displace some amount
up or down, depending on which direction the field is relative to p. It is probably
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best to switch the field direction so that the magnet displaces downward. When
the magnet is at the center of the coils, there’s more rod inside the tube than there
is outside.

Once the magnetic dipole has displaced, return it to the center of the coils
by adjusting the support rod. Then measure the length of the rod showing above
the tower. The difference between this length and the length of rod showing when
there is no magnetic field gradient is the displacement of the magnetic dipole due
to the magnetic field gradient. Record this displacement z for the current I.
Proceed from an initial current of 0.5 amps to 4 amps, in 0.5 amp increments.
Again, continuously check the ammeter at high currents to make sure that it is
staying at the value that you need for your particular measurement.

dB
The displacement z is the dependent variable for the experiment, while =

is the independent variable that varies with different currents. The spring constant

dB
k is a constant, so u can be obtained from the slope of the graph of z vs. Z
Record the data in a table with columns such as the ones below:

1(A) dB/dz (T/m) z (m)

1. Write down your observations from part a. of the procedure. Offer an
explanation for these observations. '

2. Compose a data table for the second part of the experiment, showing sample

calculations.

dz

4. Calculate the magnitude of the magnetic dipole moment from the slope of this

graph.
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