next up previous
Next: About this document ... Up: Measurement of the Vortex Previous: Measurement of the Vortex

Bibliography

1
K. Harada et al., Nature 360, 51 (1992).

2
A. Tonomura, Electron Holography, Vol. 70 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1993).

3
K. Harada et al., Science 274, 1167 (1996).

4
T. Matsuda et al., Science 271, 1393 (1996).

5
J. C. Crocker and D. G. Grier, J. Colloid Interface Sci. 179, 298 (1996).

6
F. P. Preparata and M. I. Shamos, Computational Geometry (New York, Springer Verlag, 1985).

7
D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).

8
J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).

9
K.-C. Ng, J. Chem. Phys. 61, 2680 (1974).

10
M. Mungan, C.-H. Sow, S. N. Coppersmith, and D. G. Grier, in preparation (1997).

11
The Clem model for vortex interactions (J. R. Clem, J. Low Temp. Phys. 18, 427 (1975)) is more appropriate for Nb, whose superconducting coherence length is comparable to its London penetration depth. The present data set does not offer sufficient resolution to distinguish its predictions from those of the London model, however, and we present the simpler and quantitatively adequate model for clarity.

12
R. Meservey and B. B. Schwartz, in Superconductivity, ed. R. D. Parks (New York: Marcel Dekker, 1969) pp. 117-191.

13
G. S. Park, C. E. Cunningham, B. Cabrerra, and M. E. Huber, Phys. Rev. Lett. 68, 1920 (1992).

14
G. Blatter and V. Geshkenbein, Phys. Rev. Lett. 77, 4958 (1996); S. Mukherji and T. Nattermann, Phys. Rev. Lett. 79, 139 (1997).

15
C. A. Bolle et al., Phys. Rev. Lett. 66, 112 (1991); L. L. Daemen et al., Phys. Rev. Lett. 70, 2948 (1993); M. M. Doria and I. G. de Oliveira, Phys. Rev. B 49, 6205 (1994); I. V. Grigorieva et al., Phys. Rev. B 51, 3765 (1995).



David G. Grier
1998-12-08